[1]吕国宁,高敏.视觉感知式场景文字检测定位方法[J].智能系统学报,2017,12(4):563-569.[doi:10.11992/tis.201604011]
LYU Guoning,GAO Min.Scene text detection and localization scheme with visual perception mechanism[J].CAAI Transactions on Intelligent Systems,2017,12(4):563-569.[doi:10.11992/tis.201604011]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
12
期数:
2017年第4期
页码:
563-569
栏目:
学术论文—机器感知与模式识别
出版日期:
2017-08-25
- Title:
-
Scene text detection and localization scheme with visual perception mechanism
- 作者:
-
吕国宁1, 高敏2
-
1. 郑州师范学院 网络管理中心, 河南 郑州 450044;
2. 郑州师范学院 信息科学与技术学院, 河南 郑州 450044
- Author(s):
-
LYU Guoning1, GAO Min2
-
1. Network Management Center, Zheng Zhou Normal University, Zheng Zhou 450044, China;
2. School of Information Science and Technique, Zheng Zhou Normal University, Zheng Zhou 450044, China
-
- 关键词:
-
视觉感知; 视觉显著性; 笔画宽度变换; 场景文字; 文字检测定位; 视觉注意; 汉字; 英文
- Keywords:
-
visual perception; visual saliency; swt; scene text; text detection and localization; visual attention; Chinese text; English text
- 分类号:
-
TP18;TP39
- DOI:
-
10.11992/tis.201604011
- 摘要:
-
针对自然场景中复杂背景干扰检测的问题,本文提出一种基于视觉感知机制的场景文字检测定位方法。人类视觉感知机制通常分为快速并行预注意步骤与慢速串行注意步骤。本文方法基于人类感知机制提出一种场景文字检测定位方法,该方法首先通过两种视觉显著性方法进行预注意步骤,然后利用笔画特征以及文字相互关系实现注意步骤。本文方法在ICDAR 2013与场景汉字数据集中均取得较有竞争力的结果,实验表明可以较好地用于复杂背景的自然场景英文和汉字的检测。
- Abstract:
-
To solve the detection problem with respect to the interference of complex backgrounds in natural scenes, in this paper, we propose a scene text detection and localization scheme based on a visual perception mechanism. The human visual perception mechanism is commonly divided into the fast parallel pre-attention step and the slow serial attention step. In our proposed scheme, we first precedes the pre-attention step with two visual saliency methods and then implement the attention step using a stroke feature and the relationship between characters. Our experimental results show the scheme to be competitive with respect to the ICDAR 2013 and the scene Chinese-character dataset. It is also suitable for English and Chinese character detection of natural scenes under complex background conditions.
备注/Memo
收稿日期:2016-04-07。
基金项目:国家自然基金河南人才培养联合基金项目(U1204703,U1304614).
作者简介:吕国宁,男,1981年生,讲师,主要研究方向为人工智能和大数据。
通讯作者:吕国宁,E-mail:sjzmdwxqzz@outlook.com.
更新日期/Last Update:
2017-08-25