[1]胡小生,温菊屏,钟勇.动态平衡采样的不平衡数据集成分类方法[J].智能系统学报编辑部,2016,11(2):257-263.[doi:10.11992/tis.201507015]
 HU Xiaosheng,WEN Juping,ZHONG Yong.Imbalanced data ensemble classification using dynamic balance sampling[J].CAAI Transactions on Intelligent Systems,2016,11(2):257-263.[doi:10.11992/tis.201507015]
点击复制

动态平衡采样的不平衡数据集成分类方法

参考文献/References:
[1] CATENI S, COLLA V, VANNUCCI M. A method for resampling imbalanced datasets in binary classification tasks for real-world problems[J]. Neurocomputing, 2014, 135: 32-41.
[2] ZHANG Huaxiang, LI Mingfang. RWO-Sampling: a random walk over-sampling approach to imbalanced data classification[J]. Information fusion, 2014, 20: 99-116.
[3] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16(1): 321-357.
[4] 郭丽娟, 倪子伟, 江弋, 等. 集成降采样不平衡数据分类方法研究[J]. 计算机科学与探索, 2013, 7(7): 630-638. GUO Lijuan, NI Ziwei, JIANG Yi, et al. Research on imbalanced data classification based on ensemble and under-sampling[J]. Journal of frontiers of computer and technology, 2013, 7(7): 630-638.
[5] 李雄飞, 李军, 董元方, 等. 一种新的不平衡数据学习算法PCBoost[J]. 计算机学报, 2012, 35(2): 202-209. LI Xiongfei, LI Jun, DONG Yuanfang, et al. A new learning algorithm for imbalanced data-PCBoost[J]. Chinese journal of computers, 2012, 35(2): 202-209.
[6] CHEN Xiaolin, SONG Enming, MA Guangzhi. An adaptive cost-sensitive classifier[C]//Proceedings of the 2nd International Conference on Computer and Automation Engineering. Singapore: IEEE, 2010, 1: 699-701.
[7] 李倩倩, 刘胥影. 多类类别不平衡学习算法: EasyEnsemble. M[J]. 模式识别与人工智能, 2014, 27(2): 187-192. LI Qianqian, LIU Xuying. EasyEnsemble. M for multiclass imbalance problem[J]. Pattern recognition and artificial intelligence, 2014, 27(2): 187-192.
[8] 韩敏, 朱新荣. 不平衡数据分类的混合算法[J]. 控制理论与应用, 2011, 28(10): 1485-1489. HAN Min, ZHU Xinrong. Hybrid algorithm for classification of unbalanced datasets[J]. Control theory & applications, 2012, 28(10): 1485-1489.
[9] WANG Shijin, XI Lifeng. Condition monitoring system design with one-class and imbalanced-data classifier[C]//Proceedings of the 16th International Conference on Industrial Engineering and Engineering Management. Beijing, China: IEEE, 2009: 779-783.
[10] 叶志飞, 文益民, 吕宝粮. 不平衡分类问题研究综述[J]. 智能系统学报, 2009, 4(2): 148-156. YE Zhifei, WEN Yimin, LV Baoliang. A survey of imbalanced pattern classification problems[J]. CAAI transactions on intelligent systems, 2009, 4(2): 148-156.
[11] 翟云, 杨炳儒, 曲武. 不平衡类数据挖掘研究综述[J]. 计算机科学, 2010, 37(10): 27-32. ZHAI Yun, YANG Bingyu, QU Wu. Survey of mining imbalanced datasets[J]. Computer science, 2010, 37(10): 27-32.
[12] HAN Hui, WANG Wenyuan, MAO Binghuan. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//International Conference on Intelligent Computing. Berlin Heidelberg, Germany: Springer, 2005: 878-887.
[13] HE Haibo, BAI Yang, GARCIA E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of IEEE International Joint Conference on Neural Networks. Hong Kong, China: IEEE, 2008: 1322-1328.
[14] BATISTA G, PRATI R C, MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD explorations newsletter, 2004, 6(1): 20-29.
[15] KUBAT M, MATWIN S. Addressing the curse of imbalanced training sets: one-sided selection[C]//Proceedings of the 14th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann, 1997: 179-186.
[16] 蒋盛益, 苗邦, 余雯. 基于一趟聚类的不平衡数据下抽样算法[J]. 小型微型计算机系统, 2012, 33(2): 232-236. JIANG Shengyi, MIAO Bang, YU Wen. Under-sampling method based on one-pass clustering for imbalanced data distribution[J]. Journal of Chinese computer systems, 2012, 32(2): 232-236.
[17] 胡小生, 钟勇. 基于加权聚类质心的SVM不平衡分类方法[J]. 智能系统学报, 2013, 8(3): 261-265. HU Xiaosheng, ZHONG Yong. Support vector machine imbalanced data classification based on weighted clustering centroid[J]. CAAI transactions on intelligent systems, 2013, 8(3): 261-265.
[18] 胡小生, 张润晶, 钟勇. 两层聚类的类别不平衡数据挖掘算法[J]. 计算机科学, 2013, 40(11): 271-275. HU Xiaosheng, ZHANG Runjing, ZHONG Yong. Two-tier clustering for mining imbalanced datasets[J]. Computer science, 2013, 40(11): 271-275.
[19] 陈思, 郭躬德, 陈黎飞. 基于聚类融合的不平衡数据分类方法[J]. 模式识别与人工智能, 2010, 23(6): 772-780. CHEN Si, GUO Gongde, CHEN Lifei. Clustering ensembles based classification method for imbalanced data sets[J]. Pattern recognition and artificial intelligence, 2010, 23(6): 772-780.
[20] UCI machine learning repository[EB/OL]. (2009-10-16)[2015-3-20]. http://archive.ics.uci.edu/ml.
[21] 李建更, 高志坤. 随机森林针对小样本数据类权重设置[J]. 计算机工程与应用, 2009, 45(26): 131-134. LI Jiangeng, GAO Zhikun. Setting of class weights in random forest for small-sample data[J]. Computer engineering and applications, 2009, 45(26): 131-134.
[22] CHAWLA N V, LAZAREVIC A, HALL L O, et al. SMOTBoost: improving prediction of the minority class in boosting[C]//Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases. Berlin Heidelberg: Springer, 2003, 2838: 107-119.
[23] SEIFFERT C, KHOSHGOFTAAR T M, VAN HULSE J, et al. RUSBoost: a hybrid approach to alleviating class imbalance[J]. IEEE transactions on system, man and cybernetics-part a: systems and humans, 2010, 40(1): 185-197.
相似文献/References:
[1]刘三阳 杜喆.一种改进的模糊支持向量机算法[J].智能系统学报编辑部,2007,2(3):30.
 LIU San-yang,DU Zhe.An improved fuzzy support vector machine method[J].CAAI Transactions on Intelligent Systems,2007,2():30.
[2]富春岩,葛茂松.一种能够适应概念漂移变化的数据流分类方法[J].智能系统学报编辑部,2007,2(4):86.
 FU Chun-yan,GE Mao-song.A data stream classification methods adaptive to concept drift[J].CAAI Transactions on Intelligent Systems,2007,2():86.
[3]王定桥,李卫华,杨春燕.从用户需求语句建立问题可拓模型的研究[J].智能系统学报编辑部,2015,10(6):865.[doi:10.11992/tis.201507038]
 WANG Dingqiao,LI Weihua,YANG Chunyan.Research on building an extension model from user requirements[J].CAAI Transactions on Intelligent Systems,2015,10():865.[doi:10.11992/tis.201507038]
[4]王晓初,包芳,王士同,等.基于最小最大概率机的迁移学习分类算法[J].智能系统学报编辑部,2016,11(1):84.[doi:10.11992/tis.201505024]
 WANG Xiaochu,BAO Fang,WANG Shitong,et al.Transfer learning classification algorithms based on minimax probability machine[J].CAAI Transactions on Intelligent Systems,2016,11():84.[doi:10.11992/tis.201505024]
[5]刘威,刘尚,周璇.BP神经网络子批量学习方法研究[J].智能系统学报编辑部,2016,11(2):226.[doi:10.11992/tis.201509015]
 LIU Wei,LIU Shang,ZHOU Xuan.Subbatch learning method for BP neural networks[J].CAAI Transactions on Intelligent Systems,2016,11():226.[doi:10.11992/tis.201509015]
[6]李海林,梁叶.分段聚合近似和数值导数的动态时间弯曲方法[J].智能系统学报编辑部,2016,11(2):249.[doi:10.11992/tis.201507064]
 LI Hailin,LIANG Ye.Dynamic time warping based on piecewise aggregate approximation and data derivatives[J].CAAI Transactions on Intelligent Systems,2016,11():249.[doi:10.11992/tis.201507064]
[7]花小朋,孙一颗,丁世飞.一种改进的投影孪生支持向量机[J].智能系统学报编辑部,2016,11(3):384.[doi:10.11992/tis.201603049]
 HUA Xiaopeng,SUN Yike,DING Shifei.An improved projection twin support vector machine[J].CAAI Transactions on Intelligent Systems,2016,11():384.[doi:10.11992/tis.201603049]
[8]李晨曦,孙正兴,宋沫飞,等.一种三维模型最优视图的分类选择方法[J].智能系统学报编辑部,2014,9(1):12.[doi:10.3969/j.issn.1673-4785.201305004]
 LI Chenxi,SUN Zhengxing,SONG Mofei,et al.A classification-based approach for best view selection of 3D models[J].CAAI Transactions on Intelligent Systems,2014,9():12.[doi:10.3969/j.issn.1673-4785.201305004]
[9]张龙,陈宸,韩宁,等.压缩感知理论中的建筑电气系统故障诊断[J].智能系统学报编辑部,2014,9(2):204.[doi:10.3969/j.issn.1673-4785.201310026]
 ZHANG Long,CHEN Chen,HAN Ning,et al.Fault diagnosis of electrical systems in buildingsbased on compressed sensing[J].CAAI Transactions on Intelligent Systems,2014,9():204.[doi:10.3969/j.issn.1673-4785.201310026]
[10]陈玉明,吴克寿,李向军.基因表达数据在邻域关系中的特征选择[J].智能系统学报编辑部,2014,9(2):210.[doi:10.3969/j.issn.1673-4785.201307014]
 CHEN Yuming,WU Keshou,LI Xiangjun.Gene expression data feature selection with neighborhood relation[J].CAAI Transactions on Intelligent Systems,2014,9():210.[doi:10.3969/j.issn.1673-4785.201307014]

备注/Memo

收稿日期:2015-7-9;改回日期:。
基金项目:广东省自然科学基金项目(2015A030313638);佛山科学技术学院校级科研项目;
作者简介:胡小生,男,1978年生,讲师/高级工程师,主要研究方向为机器学习、数据挖掘、人工智能。主持广东省教育厅育苗工程项目1项,参与省级、市厅级科研项目6项,发表学术论文12篇,其中被EI、ISTP检索4篇;温菊屏,女,1979年生,讲师,主要研究方向为虚拟现实、数据挖掘。主持广东省教育厅科研项目1项,参与省级、厅级科研和教改项目4项,发表学术论文9篇;钟勇,男,1970年生,教授,博士,主要研究方向为访问控制、隐私保护、信息检索、云计算。主持和参与国家自然科学基金、国家星火科技计划、省自然科学基金等国家级、省级科研项目10余项,发表学术论文30多篇,其中被SCI、EI检索10篇。
通讯作者:胡小生.E-mail:feihu@fosu.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com