[1]周治平,王杰锋,朱书伟,等.一种改进的自适应快速AF-DBSCAN聚类算法[J].智能系统学报编辑部,2016,11(1):93-98.[doi:10.11992/tis.201410021]
 ZHOU Zhiping,WANG Jiefeng,ZHU Shuwei,et al.An improved adaptive and fast AF-DBSCAN clustering algorithm[J].CAAI Transactions on Intelligent Systems,2016,11(1):93-98.[doi:10.11992/tis.201410021]
点击复制

一种改进的自适应快速AF-DBSCAN聚类算法

参考文献/References:
[1] 吉根林, 姚瑶. 一种分布式隐私保护的密度聚类算法[J]. 智能系统学报, 2009, 4(2):137-141. JI Genlin, YAO Yao. Density-based privacy preserving distributed clustering algorithm[J]. CAAI transactions on intelligent systems, 2009, 4(2):137-141.
[2] SMITI A, ELOUEDI Z. DBSCAN-GM:An improved clustering method based on Gaussian means and DBSCAN techniques[C]//2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES). Lisbon, 2012:573-578.
[3] ZHANG Jiashu, KEREKES J. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data[J]. Geoscience and remote sensing letters, 2015, 12(4):726-730.
[4] MIMAROGLU S, AKSEHIRLI E. Improving DBSCAN’s execution time by using a pruning technique on bit vectors[J]. Pattern Recognition Letters, 2011, 32(13):1572-1580.
[5] JIANG Hua, LI Jing, YI Shenghe, et al. A new hybrid method based on partitioning-based DBSCAN and ant clustering[J]. Expert systems with applications, 2011, 38(8):9373-9381.
[6] BORAH B, BHATTACHARYYA D K. An improved sampling-based DBSCAN for large spatial databases[C]//Proceedings of International Conference on Intelligent Sensing and Information Processing(ICISIP). Chennai, India, 2004:92-96.
[7] KELLNER D, KLAPPSTEIN J, DIETMAYER K. Grid-based DBSCAN for clustering extended objects in radar data[C]//2012 IEEE Intelligent Vehicles Symposium. Alcal de Henares, Madrid, Spain, 2012:365-370.
[8] ZHOU Hongfang, Wang Peng, LI Hongyan. Research on adaptive parameters determination in DBSCAN algorithm[J]. Journal of information & computational science, 2012, 9(7):1967-1973.
[9] YUE Shihong, LI Ping, GUO Jidong, et al. A statistical information-based clustering approach in distance space[J]. Journal of Zhejiang university science, 2005, 6A(1):71-78.
[10] MA Yu, GAO Yuling, SONG Shaoyun. The algorithm of DBSCAN based on probability distribution[C]//5th International Symposium on IT in Medicine and Education. Xining, China, 2014:2785-2792.
[11] JAHIRABADKAR S, KULKARNI P. Algorithm to determine ε-distance parameter in density based clustering[J]. Expert systems with applications, 2014, 41(6):2939-2946.
[12] XIONG Zhongyang, CHEN Ruotian, ZHANG Yufang, et al. Multi-density DBSCAN algorithm based on density levels partitioning[J]. Journal of information and computational science, 2012, 9(10):2739-2749.
[13] LIU Bing. A fast density-based clustering algorithm for large databases[C]//2006 International Conference on Machine Learning and Cybernetics. Dalian, China, 2006:996-1000.
[14] 夏鲁宁.SA-DBSCAN:一种自适应基于密度聚类算法[J]. 中国科学院研究生院学报, 2009, 26(4):530-538. XIA Luning. SA-DBSCAN:A self-adaptive density-based clustering algorithm[J]. Journal of the graduate school of the Chinese academy of sciences, 2009, 26(4):530-538.
[15] 周水庚, 周傲英, 曹晶, 等. 一种基于密度的快速聚类算法[J]. 计算机研究与发展, 2000, 37(11):1287-1292. ZHOU Shuigeng, ZHOU Aoying, CAO Jing, et al. A fast density-based clustering algorithm[J]. Journal of computer research & development, 2000, 37(11):1287-1292.
相似文献/References:
[1]陆剑锋,郭茂祖,张昱,等.基于时空约束密度聚类的停留点识别方法[J].智能系统学报编辑部,2020,15(1):59.[doi:10.11992/tis.201910026]
 LU Jianfeng,GUO Maozu,ZHANG Yu,et al.Stay point recognition method based on spatio-temporal constraint density clustering[J].CAAI Transactions on Intelligent Systems,2020,15():59.[doi:10.11992/tis.201910026]
[2]郭茂祖,邵首飞,赵玲玲,等.基于时空周期模式挖掘的活动语义识别方法[J].智能系统学报编辑部,2021,16(1):162.[doi:10.11992/tis.202012035]
 GUO Maozu,SHAO Shoufei,ZHAO Lingling,et al.Active semantic recognition method based on spatial-temporal period pattern mining[J].CAAI Transactions on Intelligent Systems,2021,16():162.[doi:10.11992/tis.202012035]

备注/Memo

收稿日期:2014-10-13;改回日期:。
基金项目:国家自然科学基金资助项目(61373126);江苏省产学研联合创新资金-前瞻性联合研究基金资助项目(BY2013015-33).
作者简介:周治平,男,1962年生,教授,博士,主要研究方向为检测技术与自动化装置、信息安全等;王杰锋,男,1989年生,硕士研究生,主要研究方向为智能信息处理;朱书伟,男,1990年生,硕士研究生,主要研究方向为数据挖掘与人工智能。
通讯作者:王杰锋.E-mail:18352513420@163.com.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com