[1]张俊玲,陈增强,张青.基于粒子群优化的Elman神经网络无模型控制[J].智能系统学报编辑部,2016,11(1):49-54.[doi:10.11992/tis.201507025]
 ZHANG Junling,CHEN Zengqiang,ZHANG Qing.Elman model-free control method based on particle swarm optimization algorithm[J].CAAI Transactions on Intelligent Systems,2016,11(1):49-54.[doi:10.11992/tis.201507025]
点击复制

基于粒子群优化的Elman神经网络无模型控制

参考文献/References:
[1] 侯忠生, 韩志刚. 非线性系统鲁棒无模型学习自适应控制[J]. 控制与决策, 1995, 10(2):137-142. HOU Zhongsheng, HAN Zhigang. Robust modelless learning adaptive control of nonlinear systems[J]. Control and decision, 1995, 10(2):137-142.
[2] 李秀英, 李桂英, 毛琳, 等. 采用改进粒子群算法的非线性大时滞系统无模型控制[J]. 智能系统学报, 2013, 8(3):254-260. LI Xiuying, LI Guiying, MAO Lin, et al. Model-free control method for a nonlinear system with large time-delay based on IPSO[J]. CAAI transactions on intelligent systems, 2013, 8(3):254-260.
[3] LEE K Y, KO H S, KIM H C, et al. A free model based intelligent controller design and its application to power system stabilization[C]//Proceedings of the IEEE Power Engineering Society Summer Meeting. Seattle, WA, USA, 2000, 4:1985-1989.
[4] SPALL J C, CRISTION J A. Model-free control of nonlinear stochastic systems in discrete time[C]//Proceedings of the 34th IEEE International Conference on Decision and Control. New Orleans, LA, USA, 1995, 3:2199-2204.
[5] CHENG G S. Model-free adaptive (MFA) control[J]. Computing & Control Engineering, 2004, 15(3):28-33.
[6] 刘德荣, 李宏亮, 王鼎. 基于数据的自学习优化控制:研究进展与展望[J]. 自动化学报, 2013, 39(11):1858-1870. LIU Derong, LI Hongliang, WANG Ding. Data-based self-learning optimal control:research progress and prospects[J]. Acta automatica sinica, 2013, 39(11):1858-1870.
[7] ZHANG L, WANG N. Double neuron model-free control for pH processes[C]//Proceedings of 2010 Chinese Control and Decision Conference. Xuzhou, China, 2010:2867-2871.
[8] ELMAN J L. Finding structure in time[J]. Cognitive science, 1990, 14(2):179-211.
[9] LI Xiang, CHEN Zengqiang, YUAN Zhuzhi. Nonlinear stable adaptive control based upon Elman networks[J]. Applied mathematics:a Journal of Chinese universities, 2000, 15(3):332-340.
[10] 王俭臣, 齐晓慧, 单甘霖. 基于EPSO-BP的Elman网络及其在飞行轨迹预测中的应用[J]. 控制与决策, 2013, 28(12):1884-1888. WANG Jianchen, QI Xiaohui, SHAN Ganlin. Elman network based on EPSO-BP and its application in flight trajectory prediction[J]. Control and decision, 2013, 28(12):1884-1888.
[11] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks. Perth, WA, USA, 1995, 4:1942-1948.
[12] 赵勇, 岳继光, 李炳宇, 等. 一种新的求解复杂函数优化问题的并行粒子群算法[J]. 计算机工程与应用, 2005, 41(16):58-60, 64. ZHAO Yong, YUE Jiguang, LI Bingyu, et al. A parallel particle swarm optimization algorithm based on multigroup for solving complex functions optimization[J]. Computer engineering and applications, 2005, 41(16):58-60, 64.
[13] 岑翼刚, 秦元庆, 孙德宝, 等. 粒子群算法在小波神经网络中的应用[J]. 系统仿真学报, 2004, 16(12):2783-2785, 2788. CEN Yigang, QIN Yuanqing, SUN Debao, et al. Application of PSO algorithm in wavelet neural network[J]. Acta simulata systematica sinica, 2004, 16(12):2783-2785, 2788.
[14] 李宁, 邹彤, 孙德宝, 等. 基于粒子群的多目标优化算法[J]. 计算机工程与应用, 2005, 41(23):43-46. LI Ning, ZOU Tong, SUN Debao, et al. Multi-objective optimization utilizing particle swarm[J]. Computer engineering and applications, 2005, 41(23):43-46.
[15] 孙胜永, 胡双演, 李钊, 等. 基于粒子群优化算法的BP神经网络图像复原[J]. 无线电工程, 2014, 44(10):5-7. SUN Shengyong, HU Shuangyan, LI Zhao, et al. BP Neural Network for image restoration based on Particle Swarm Optimization[J]. Radio engineering, 2014, 44(10):5-7.
[16] 金尚泰, 侯忠生, 池荣虎, 等. 侯离散时间非线性系统的数据驱动无模型自适应迭代学习控制[J]. 控制理论与应用, 2012, 29(8):1001-1009.JIN Shangtai, HOU Zhongsheng, CHI Ronghu, et al. Data-driven model-free adaptive iterative learning control for a class of discrete-time nonlinear systems[J]. Control theory & applications, 2012, 29(8):1001-1009.
[17] NARENDRA K S, MUKHOPADHYAY S. Adaptive control using neural networks and approximate models[J]. IEEE transactions on neural networks, 1997, 8(3):475-485.
相似文献/References:
[1]姚丽萍,刘国栋.一类非线性不确定系统的非奇异Terminal滑模控制[J].智能系统学报编辑部,2007,2(5):53.
 YAO Li-ping,LIU Guo-dong.Nonsingular Terminal sliding mode control for a class of uncertain nonlinear systems[J].CAAI Transactions on Intelligent Systems,2007,2():53.
[2]李钧涛,贾英民.基于自适应神经网络的一类不确定非线性系统的鲁棒H∞控制[J].智能系统学报编辑部,2007,2(6):54.
 LI Jun-tao,JIA Ying-min.Robust H∞ control for a class of uncertain nonlin ear systems based on adaptive neural networks[J].CAAI Transactions on Intelligent Systems,2007,2():54.
[3]袁 雷,吴汉松.船舶航向非线性系统的多滑模自适应模糊控制[J].智能系统学报编辑部,2010,5(4):308.
 YUAN Lei,WU Han song.Multiple sliding mode adaptive fuzzy controller for nonlinear marine autopilot systems[J].CAAI Transactions on Intelligent Systems,2010,5():308.
[4]李秀英,李桂英,毛琳,等.采用改进粒子群算法的非线性大时滞系统无模型控制[J].智能系统学报编辑部,2013,8(3):254.
 LI Xiuying,LI guiying,MAO Lin,et al.Model-free control method for a nonlinear system with large time-delay based on IPSO[J].CAAI Transactions on Intelligent Systems,2013,8():254.
[5]张晓宇,刘彬博.一种离散直接自适应模糊滑模控制[J].智能系统学报编辑部,2014,9(2):197.[doi:10.3969/j.issn.1673-4785.201303034]
 ZHANG Xiaoyu,LIU Binbo.A direct adaptive fuzzy sliding mode control method for discrete nonlinear systems[J].CAAI Transactions on Intelligent Systems,2014,9():197.[doi:10.3969/j.issn.1673-4785.201303034]
[6]刘楠,刘福才,孟爱文.基于改进PSO和FCM的模糊辨识[J].智能系统学报编辑部,2019,14(2):378.[doi:10.11992/tis.201707025]
 LIU Nan,LIU Fucai,MENG Aiwen.Fuzzy identification based on improved PSO and FCM[J].CAAI Transactions on Intelligent Systems,2019,14():378.[doi:10.11992/tis.201707025]
[7]秦贝贝,陈增强,孙明玮,等.基于自适应神经模糊推理系统的船舶航向自抗扰控制[J].智能系统学报编辑部,2020,15(2):255.[doi:10.11992/tis.201809047]
 QIN Beibei,CHEN Zengqiang,SUN Mingwei,et al.Active disturbance rejection control of ship course based on adaptive-network-based fuzzy inference system[J].CAAI Transactions on Intelligent Systems,2020,15():255.[doi:10.11992/tis.201809047]
[8]白涛,董勤浩,冯梓昆,等.基于强化学习的水下高速航行体纵向运动控制研究[J].智能系统学报编辑部,2023,18(5):902.[doi:10.11992/tis.202203024]
 BAI Tao,DONG Qinhao,FENG Zikun,et al.Longitudinal motion control of underwater high-speed vehicles based on reinforcement learning[J].CAAI Transactions on Intelligent Systems,2023,18():902.[doi:10.11992/tis.202203024]

备注/Memo

收稿日期:2015-07-20;改回日期:。
基金项目:国家自然科学基金资助项目(61174094);天津市自然科学基金资助项目(14JCYBJC18700).
作者简介:张俊玲,女,1990年生,硕士研究生,主要研究方向为无模型控制、智能优化算法;陈增强,男,1964年生,教授,博士生导师,主要研究方向为智能控制、智能信息处理,曾获天津市自然科学二等奖,发表学术论文100余篇;张青,女,1965年生,教授,主要研究方向为复杂系统建模与控制、多智能体系统,发表学术论文30余篇。
通讯作者:陈增强.E-mail:chenzq@nankai.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com