[1]姬晓飞,秦宁丽,刘洋.多特征的光学遥感图像多目标识别算法[J].智能系统学报,2016,11(5):655-662.[doi:10.11992/tis.201511011]
JI Xiaofei,QIN Ningli,LIU Yang.Research on multi-feature based multi-target recognition algorithm for optical remote sensing image[J].CAAI Transactions on Intelligent Systems,2016,11(5):655-662.[doi:10.11992/tis.201511011]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
11
期数:
2016年第5期
页码:
655-662
栏目:
学术论文—机器感知与模式识别
出版日期:
2016-11-01
- Title:
-
Research on multi-feature based multi-target recognition algorithm for optical remote sensing image
- 作者:
-
姬晓飞1, 秦宁丽2, 刘洋1
-
1. 沈阳航空航天大学 自动化学院, 辽宁 沈阳 110136;
2. 北京国电通网络技术有限公司, 北京 100070
- Author(s):
-
JI Xiaofei1, QIN Ningli2, LIU Yang1
-
1. School of Automation, Shenyang Aerospace University, Shenyang 110136, China;
2. Beijing GuoDianTong Network Technology Co. Ltd, Beijing 100070, China
-
- 关键词:
-
光学遥感图像; 多特征的决策级融合; 分层的BoF-SIFT特征; SC形状特征; Hu不变矩特征; 支持向量机
- Keywords:
-
optical remote sensing image; multi-features decision level fusion; hierarchical BoF-SIFT feature; shape context feature; Hu moment invariants; support vector machine
- 分类号:
-
TP751.1
- DOI:
-
10.11992/tis.201511011
- 摘要:
-
基于单一特征的光学遥感图像多目标分类识别存在准确性较差的问题,提出一种新的基于多特征决策级融合的多目标分类识别算法。首先对光学遥感图像目标提取3种能够同时满足平移、旋转和尺度不变性的特征:可以描述局部和全局分布特性的分层BoF-SIFT特征,描述目标边缘轮廓点信息的改进后的SC形状特征,对图像中较大目标识别较好的Hu不变矩特征;其次采用基于径向基核函数的一对一支持向量机算法分别获得3种特征的目标识别概率,并设计了一种多特征决策级加权融合的策略实现对多目标的分类。经多次实验验证该算法对光学遥感图像多目标具有较好的分类识别性能,达到了93.52%的正确识别率。
- Abstract:
-
A novel multi-feature decision level fusion recognition algorithm is proposed to solve the problem of poor levels of accuracy with single feature based multi-target classification of optical remote sensing images. Firstly, three kinds of features which can not only meet translation, rotation, and scale invariance are extracted. One is the hierarchical BoF-SIFT feature which can simultaneously describe local and global distributions. Another is the improved shape context feature which is used to describe the target edge contour point information. The other one is Hu moment invariants which gives better levels of recognition performance for large targets. Secondly, the recognition probabilities of these features are obtained using a one versus one support vector machine based on a radial basis function. Thirdly a strategy for multi-feature decision level fusion is designed. A large number of experiments show that the algorithm for multi-target classification of optical remote sensing images performs better with the recognition rate of targets reaching 93.52%.
备注/Memo
收稿日期:2015-11-10。
基金项目:国家自然科学基金项目(61103123);辽宁省高等学校优秀人才支持计划项目(LJQ214018);辽宁省自然科学基金项目(2015020101).
作者简介:姬晓飞,女,1978年生,副教授,博士,主要研究方向为视频分析与处理、模式识别。承担国家自然科学基金、教育部留学回国启动基金等多项课题研究。发表学术论文40余篇,被SCI、EI检索20余篇。参与编著英文专著1部;秦宁丽,女,1991年生,硕士研究生,主要研究方向为遥感图像处理与分析。发表学术论文1篇;刘洋,1977年生,副教授,博士,主要研究方向为图像处理、模式识别。
通讯作者:姬晓飞.E-mail:jixiaofei7804@126.com
更新日期/Last Update:
1900-01-01