[1]彭晓华,刘利强.混沌搜索策略的改进人工蜂群算法[J].智能系统学报编辑部,2015,10(6):927-933.[doi:10.11992/tis.201507032]
 PENG Xiaohua,LIU Liqiang.Improved artificial bee colony algorithm based on chaos searching strategy[J].CAAI Transactions on Intelligent Systems,2015,10(6):927-933.[doi:10.11992/tis.201507032]
点击复制

混沌搜索策略的改进人工蜂群算法

参考文献/References:
[1] KARABOGA D, AKAY B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1):108-132.
[2] KARABOGA D, OZTURK C. A novel clustering approach:artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2011, 11(1):652-657.
[3] ZHU Guopu, KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7):3166-3173.
[4] SZETO W Y, WU Yongzhong, HO S C. An artificial bee colony algorithm for the capacitated vehicle routing problem[J]. European Journal of Operational Research, 2011, 215(1):126-135.
[5] 罗钧, 李研. 具有混沌搜索策略的蜂群优化算法[J]. 控制与决策, 2010, 25(12):1913-1916. LUO Jun, LI Yan. Artificial bee colony algorithm with chaotic-search strategy[J]. Control and Decision, 2010, 25(12):1913-1916.
[6] 宁爱平, 张雪英. 人工蜂群算法的收敛性分析[J]. 控制与决策, 2013, 28(10):1554-1558. NING Aiping, ZHANG Xueying. Convergence analysis of artificial bee colony algorithm[J]. Control and Decision, 2013, 28(10):1554-1558.
[7] 王冰. 基于局部最优解的改进人工蜂群算法[J]. 计算机应用研究, 2014, 31(4):1024-1026. WANG Bing. Improved artificial bee colony algorithm based on local best solution[J]. Application Research of Computers, 2014, 31(4):1024-1026.
[8] 伍大清, 郑建国. 基于混合策略自适应学习的并行粒子群优化算法[J]. 控制与决策, 2013, 28(7):1087-1093. WU Daqing, ZHENG Jianguo. Improved parallel particle swarm optimization algorithm with hybrid strategy and self-adaptive learning[J]. Control and Decision, 2013, 28(7):1087-1093.
[9] 胥小波, 郑康锋, 李丹, 等. 新的混沌粒子群优化算法[J]. 通信学报, 2012, 33(1):24-30, 37. XU Xiaobo, ZHENG Kangfeng, LI Dan, et al. New chaos-particle swarm optimization algorithm[J]. Journal on Communications, 2012, 33(1):24-30, 37.
[10] 匡芳君, 徐蔚鸿, 金忠. 自适应Tent混沌搜索的人工蜂群算法[J]. 控制理论与应用, 2014, 31(11):1502-1509. KUANG Fangjun, XU Weihong, JIN Zhong. Artificial bee colony algorithm based on self-adaptive tent chaos search[J]. Control Theory & Applications, 2014, 31(11):1502-1509.
[11] 王辉. 改进的蜂群算法[J]. 计算机工程与设计, 2011, 32(11):3869-3872. WANG Hui. Improved artificial bee colony algorithm[J]. Computer Engineering and Design, 2011, 32(11):3869-3872.
[12] 王辉. 一种带共享因子的人工蜂群算法[J]. 计算机工程, 2011, 37(22):139-142. WANG Hui. Artificial bee colony algorithm with sharing factor[J]. Computer Engineering, 2011, 37(22):139-142.
[13] 刘三阳, 张平, 朱明敏. 基于局部搜索的人工蜂群算法[J]. 控制与决策, 2014, 29(1):123-128. LIU Sanyang, ZHANG Ping, ZHU Mingmin. Artificial bee colony algorithm based on local search[J]. Control and Decision, 2014, 29(1):123-128.
[14] 彭泓, 丁玉成. 基于遗传交叉因子的蝙蝠算法的改进[J]. 激光杂志, 2015, 36(2):23-26. PENG Hong, DING Yucheng. Improved bats algorithm optimization based on genetic hybrid genes[J]. Laser Journal, 2015, 36(2):23-26.
[15] GAO Weifeng, LIU Sanyang. A modified artificial bee colony algorithm[J]. Computers & Operations Research, 2012, 39(3):687-697.
[16] OMKAR S N, SENTHILNATH J, RAHUL K, et al. Artificial bee colony(ABC) for multi-objective design optimization of composite structures[J]. Applied Soft Computing, 2011, 11(1):489-499.
[17] KARABOGA D, AKAY B. Artificial bee colony(ABC) algorithm on training artificial neural networks[C]//Proceedings of IEEE 15th Signal Processing and Communications Applications. Eskisehir:IEEE, 2007:1-4.
[18] KARABOGA N. A new design method based on artificial bee colony algorithm for digital IIR filters[J]. Journal of the Franklin Institute, 2009, 346(4):328-348.
[19] 王瑞琪, 李珂, 张承慧. 基于混沌多目标遗传算法的微网系统容量优化[J]. 电力系统保护与控制, 2011, 39(22):16-22. WANG Ruiqi, LI Ke, ZHANG Chenghui. Optimization allocation of microgrid capacity based on chaotic multi-objective genetic algorithm[J]. Power System Protection and Control, 2011, 39(22):16-22.
[20] 暴励, 曾建潮. 一种双种群差分蜂群算法[J]. 控制理论与应用, 2011, 28(2):266-272. BAO Li, ZENG Jianchao. A bi-group differential artificial bee colony algorithm[J]. Control Theory & Applications, 2011, 28(2):266-272.
相似文献/References:
[1]刘敏,邹杰,冯星,等.人工蜂群算法的无人机航路规划与平滑[J].智能系统学报编辑部,2011,6(4):344.
 LIU Min,ZOU Jie,FENG Xing,et al.Smooth trajectory planning of an unmanned aerial vehicleusing an artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2011,6():344.
[2]高珊,马良,张惠珍.基于人工蜂群算法的电子商务多Agent自动谈判模型[J].智能系统学报编辑部,2015,10(3):476.[doi:10.3969/j.issn.1673-4785.201405023]
 GAO Shan,MA Liang,ZHANG Huizhen.Multi-Agent automated negotiation model for E-commerce based on the artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2015,10():476.[doi:10.3969/j.issn.1673-4785.201405023]
[3]陈杰,沈艳霞,陆欣.基于信息反馈和改进适应度评价的人工蜂群算法[J].智能系统学报编辑部,2016,11(2):172.[doi:10.11992/tis.201506024]
 CHEN Jie,SHEN Yanxia,LU Xin.Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J].CAAI Transactions on Intelligent Systems,2016,11():172.[doi:10.11992/tis.201506024]
[4]秦全德,程适,李丽,等.人工蜂群算法研究综述[J].智能系统学报编辑部,2014,9(2):127.[doi:10.3969/j.issn.1673-4785.201309064]
 QIN Quande,CHENG Shi,LI Li,et al.Artificial bee colony algorithm: a survey[J].CAAI Transactions on Intelligent Systems,2014,9():127.[doi:10.3969/j.issn.1673-4785.201309064]
[5]张平,刘三阳,朱明敏.基于人工蜂群算法的贝叶斯网络结构学习[J].智能系统学报编辑部,2014,9(3):325.[doi:10.3969/j.issn.1673-4785.201310014]
 ZHANG Ping,LIU Sanyang,ZHU Mingmin.Structure learning of Bayesian networks by use of the artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2014,9():325.[doi:10.3969/j.issn.1673-4785.201310014]
[6]刘永波.投资组合优化的可行性规则人工蜂群算法[J].智能系统学报编辑部,2014,9(4):491.[doi:10.3969/j.issn.1673-4785.201308047]
 LIU Yongbo.An artificial bee colony algorithm with the feasibility rulefor portfolio investment optimizations[J].CAAI Transactions on Intelligent Systems,2014,9():491.[doi:10.3969/j.issn.1673-4785.201308047]
[7]刘晓芳,柳培忠,骆炎民,等.一种增强局部搜索能力的改进人工蜂群算法[J].智能系统学报编辑部,2017,12(5):684.[doi:10.11992/tis.201612026]
 LIU Xiaofang,LIU Peizhong,LUO Yanmin,et al.Improved artificial bee colony algorithm based on enhanced local search[J].CAAI Transactions on Intelligent Systems,2017,12():684.[doi:10.11992/tis.201612026]

备注/Memo

收稿日期:2015-04-30;改回日期:。
基金项目:国家自然科学基金资助项目(51274118);辽宁省教育厅基金资助项目(L2012119).
作者简介:彭晓华,女,1963年生,教授,博士,主要研究方向为煤层瓦斯渗流理论研究、智能控制理论方法与应用研究。参加国家自然基金项目2项,主持和参加省教育厅科学研究基金项目各一项,主持或参加其他科研项目10余项。通过省市和学校鉴定的科研课题多项,获科研成果10余项。发表学术论文20余篇。刘利强,男,1988年生,硕士研究生,主要研究方向为智能检测与故障诊断。
通讯作者:刘利强.E-mail:2965131477@qq.com.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com