[1]孙劲光,孟凡宇.一种特征加权融合人脸识别方法[J].智能系统学报编辑部,2015,10(6):912-920.[doi:10.11992/tis.201509025]
SUN Jinguang,MENG Fanyu.Face recognition by weighted fusion of facial features[J].CAAI Transactions on Intelligent Systems,2015,10(6):912-920.[doi:10.11992/tis.201509025]
点击复制
《智能系统学报》编辑部[ISSN 1673-4785/CN 23-1538/TP] 卷:
10
期数:
2015年第6期
页码:
912-920
栏目:
学术论文—机器感知与模式识别
出版日期:
2015-12-25
- Title:
-
Face recognition by weighted fusion of facial features
- 作者:
-
孙劲光1,2, 孟凡宇2
-
1. 辽宁工程技术大学电子与信息工程学院, 辽宁葫芦岛 125000;
2. 辽宁省数字化矿山装备工程技术研究中心, 辽宁阜新 123000
- Author(s):
-
SUN Jinguang1,2, MENG Fanyu2
-
1. School of Electronics and Information Engineering, Liaoniing Technical University, Huludao 125000, China;
2. LiaoNing Digital Mining Equipment Engineering Technology Research Center, Fuxin 123000, China
-
- 关键词:
-
人脸识别; 非限制条件; 深度自信网络; 局部特征; 特征融合; 全局特征
- Keywords:
-
face recognition; unconstrained condition; deep belief networks; local feature; feature fusion; overall feature
- 分类号:
-
TN911.73
- DOI:
-
10.11992/tis.201509025
- 摘要:
-
针对传统人脸识别算法在非限制条件下识别准确率不高的问题,提出了一种特征加权融合人脸识别方法(DLWF+)。根据人脸面部左眼、右眼、鼻子、嘴、下巴等5个器官位置,将人脸图像划分成5个局部采样区域;将得到的5个局部采样区域和整幅人脸图像分别输入到对应的神经网络中进行网络权值调整,完成子网络的构建;利用softmax回归求出6个相似度向量并组成相似度矩阵与权向量相乘得出最终的识别结果。经ORL和WFL人脸库上进行实验验证,识别准确率分别达到97%和91.63%。实验结果表明:该算法能够有效提高人脸识别能力,与传统识别算法相比在限制条件和非限制条件下都具有较高的识别准确率。
- Abstract:
-
The accuracy of face recognition is low under unconstrained conditions. To solve this problem, we propose a new method based on deep learning and the weighted fusion of facial features. First, we divide facial feature points into five regions using an active shape model and then sample different facial components corresponding to those facial feature points. A corresponding deep belief network(DBN) was then trained based on these regional samples to obtain optimal network parameters. The five regional sampling regions and entire facial image obtained were then inputted into a corresponding neural network to adjust the network weight and complete the construction of sub-networks. Finally, using softmax regression, we obtained six similarity vectors of different components. These six similarity vectors comprise a similarity matrix, which is then multiplied by the weight vector to derive the final recognition result. Recognition accuracy was 97% and 91.63% on the ORL and WFL face databases, respectively. Compared with traditional recognition algorithms such as SVM, DBN, PCA, and FIP+LDA, recognition rates for both databases were improved in both constrained and unconstrained conditions. On the basis of these experimental results, we conclude that the proposed algorithm demonstrates high efficiency in face recognition.
备注/Memo
收稿日期:2015-09-17;改回日期:。
基金项目:国家科技支撑计划资助项目(2013BAH12F02).
作者简介:孙劲光,女,1962年生,博士,教授,博士生导师,计算机学会(CCF)会员(21314S),主要研究方向为计算机图像处理、计算机图形学、知识工程。孟凡宇,男,1991年生,硕士研究生,主要研究方向为计算机图像处理。
通讯作者:孟凡宇.E-mail:mengfanyu1991@163.com.
更新日期/Last Update:
1900-01-01