[1]唐少虎,刘小明.一种改进的自适应步长的人工萤火虫算法[J].智能系统学报,2015,10(3):470-475.[doi:10.3969/j.issn.1673-4785.201403025]
 TANG Shaohu,LIU Xiaoming.An improved adaptive step glowworm swarm optimization algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(3):470-475.[doi:10.3969/j.issn.1673-4785.201403025]
点击复制

一种改进的自适应步长的人工萤火虫算法

参考文献/References:
[1] LIAO Wenhua, KAO Yucheng, LI Yingshan. A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks[J]. Expert Systems with Applications, 38(10): 12180-12188.
[2] KRISHNANAND K N D, GHOSE D. Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications[J]. Multiagent and Grid Systems, 2006, 2(3) 209-222.
[3] KRISHNANAND K N, GHOSE D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions[J]. Swarm Intelligence, 2009, 3(2): 87-124.
[4] YANG Yan, ZHOU Yongquan, GONG Qiaoqiao. Hybrid artificial glowworm swarm optimization algorithm for solving system of nonlinear equations[J]. Journal of Computational Information Systems, 2010, 6(10) 3431-3438.
[5] 黄正新, 周永权. 自适应步长萤火虫群多模态函数优化算法[J]. 计算机科学, 2011, 38(7): 220-224.HUANG Zhengxin, ZHOU Yongquan. Self-adaptive step glowworm swarm optimization algorithm for optimizing multimodal functions[J]. Computer Science, 2011, 38(7): 220-224.
[6] 欧阳喆, 周永权. 自适应步长萤火虫优化算法[J]. 计算机应用, 2011, 31(7): 1804-1807.OUYANG Zhe, ZHOU Yongquan. Self-adaptive step glowworm swarm optimization algorithm[J]. Journal of Computer Applications, 2011, 31(7): 1804-1807.
[7] KRISHNANAND K N D, GHOSE D. Glowworm swarm optimization: a new method for optimizing multi-modal functions[J]. Computational Intelligence Studies, 2009, 1(1): 93-119
[8] 张军丽, 周永权. 人工萤火虫与差分进化混合优化算法[J]. 信息与控制, 2011, 40(5): 608-613.ZHANG Junli, ZHOU Yongquan. A hybrid optimization algorithm based on artificial glowworm swarm and differential evolution[J]. Information and Control, 2011, 40(5): 608-613.
[9] 刘洲洲, 王福豹, 张克旺. 基于改进萤火虫优化算法的WSN 覆盖优化分析[J]. 传感技术学报, 2013, 26(5): 675-682.LIU Zhouzhou, WANG Fubao, ZHANG Kewang. Performance analysis of improved glowworm swarm optimization algorithm and the application in coverage optimization of WSNs[J]. Chinese Journal of Sensors and Actuators, 2013, 26(5): 675-682.
[10] 张慧斌, 王鸿斌, 胡志军. PSO算法全局收敛性分析[J]. 计算机工程与应用, 2011, 47(34): 61-63.ZHANG Huibin, WANG Hongbin, HU Zhijun. Analysis of particle swarm optimization algorithm global convergence method[J]. Computer Engineering and Applications, 2011, 47(34): 61-63.
[11] SOLIS F J, WETS R J B. Minimization by random search techniques[J]. Mathematics of Operations Research, 1981, 6(1): 19-30.
相似文献/References:
[1]魏伟一,文雅宏.一种精英反向学习的萤火虫优化算法[J].智能系统学报,2017,12(5):710.[doi:10.11992/tis.201706014]
 WEI Weiyi,WEN Yahong.Firefly optimization algorithm utilizing elite opposition-based learning[J].CAAI Transactions on Intelligent Systems,2017,12():710.[doi:10.11992/tis.201706014]
[2]吴一全,周建伟.布谷鸟搜索算法研究及其应用进展[J].智能系统学报,2020,15(3):435.[doi:10.11992/tis.201811005]
 WU Yiquan,ZHOU Jianwei.Overview of the cuckoo search algorithm and its applications[J].CAAI Transactions on Intelligent Systems,2020,15():435.[doi:10.11992/tis.201811005]

备注/Memo

收稿日期:2015-3-9;改回日期:。
基金项目:国家自然科学基金资助项目(61374191);国家“863”计划资助项目(2012AA112401);“十二五”国家科技支撑计划课题专项经费资助项目(2014BAG03B01).
作者简介:唐少虎,男,1986年生,博士研究生,主要研究方向为交通控制、群智能算法.刘小明,男,1974年生,教授,博士,主要研究方向为交通控制、交通流理论.近年来主持国家级、省部级科研项目8项,获大连市科学技术一等奖1项,北京市科学技术成果二、三等奖各1项,中国智能交通协会科学技术奖二等奖1项.申请发明专利3项,授权发明专利1项,授权实用新型专利1项,获软件著作权4项.发表学术论文40余篇,出版专著1部、译著1部.
通讯作者:唐少虎. E-mail: tshaohu@163.com.

更新日期/Last Update: 2015-07-15
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com