[1]赵嘉,吕莉,樊棠怀.广义中心混合蛙跳算法[J].智能系统学报,2015,10(3):414-421.[doi:10.3969/j.issn.1673-4785.201405070]
ZHAO Jia,LYU Li,FAN Tanghuai.Shuffled frog-leaping algorithm based on the general center[J].CAAI Transactions on Intelligent Systems,2015,10(3):414-421.[doi:10.3969/j.issn.1673-4785.201405070]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
10
期数:
2015年第3期
页码:
414-421
栏目:
学术论文—人工智能基础
出版日期:
2015-06-25
- Title:
-
Shuffled frog-leaping algorithm based on the general center
- 作者:
-
赵嘉, 吕莉, 樊棠怀
-
南昌工程学院 信息工程学院, 江西 南昌 330099
- Author(s):
-
ZHAO Jia, LYU Li, FAN Tanghuai
-
School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China
-
- 关键词:
-
蛙跳算法; 混合蛙跳算法; 广义中心; 蛙跳规则; 群智能算法
- Keywords:
-
frog-leaping algorithm; shuffled frog leaping algorithm (SFLA); general center; frog leaping rule; swarm intelligence algorithms
- 分类号:
-
TP301
- DOI:
-
10.3969/j.issn.1673-4785.201405070
- 文献标志码:
-
A
- 摘要:
-
为解决标准混合蛙跳算法族群之间信息共享能力差的问题,加强族群内蛙的学习能力,利用各族群最优蛙位置的平均中心,构造一个与各族群最优蛙都有关联的虚拟广义中心蛙,提出广义中心混合蛙跳算法.该算法在进化过程中,首先蛙群最优蛙在原有位置及广义中心蛙的位置上进行“贪婪”选择,选择最好位置作为新的族群最优蛙位置;其次将广义中心蛙的优势运用于蛙跳规则中,在标准混合蛙跳算法的蛙跳规则中加入族群最差蛙向广义中心蛙学习的能力.将本文算法与不同维度下的标准混合蛙跳算法及新近提出的知名群智能算法进行比较,实验结果表明,本文算法在解的精度、收敛速度及解的稳定性等方面具有更优的性能.
- Abstract:
-
In this paper, a shuffled frog-leaping algorithm based on general center (GC-SFLA) is proposed to solve the problem of weak information sharing between memeplexes in the shuffled frog leaping algorithm (SFLA) to enhance the learning ability and use the average center of optimal frog. The proposed GC-SFLA generates a virtual general center frog from the optimal frog of each memeplex. Firstly, the optimal frog selects the best location among the original location and general center greedily as new location of new memeplex. After that, the advantage of general center frog is applied to the frog-leaping rule, which enable the worst frog to learn from the general center frog. Experiments are conducted on a set of swarm intelligence algorithms to verify that the new approach outperforms SFLA in different dimensions. The experiment results present promising performance of the GC-SFLA on convergence velocity, precision and stability of solution.
备注/Memo
收稿日期:2014-6-3;改回日期:。
基金项目:国家自然科学基金资助项目(61261039,61263029);江西省自然科学基金资助项目(20132BAB211031);江西省科技厅科技支撑项目(20142BBG70034);南昌市科技计划项目(2013HZCG006,2013HZCG011,2014HZZC008).
作者简介:赵嘉,男,1981年生,副教授,主要研究方向为计算智能、群体智能、智能信息处理.吕莉,女,1982年生,副教授,主要研究方向计算智能、目标跟踪.樊棠怀,男,1962年生,教授,博士,主要研究方向为无线传感器网络、数据采集与处理、信息融合.
通讯作者:赵嘉. E-mail: zhaojia925@163.com.
更新日期/Last Update:
2015-07-15