[1]梁路,王彪,王剑辉,等.基于细精度关联规则挖掘的电信客户流失分析[J].智能系统学报,2015,10(3):407-413.[doi:10.3969/j.issn.1673-4785.201404050]
 LIANG Lu,WANG Biao,WANG Jianhui,et al.Analysis of telecom customer churn based on fine-grained association rule mining[J].CAAI Transactions on Intelligent Systems,2015,10(3):407-413.[doi:10.3969/j.issn.1673-4785.201404050]
点击复制

基于细精度关联规则挖掘的电信客户流失分析

参考文献/References:
[1] 朱扬勇, 熊赟. DNA序列数据挖掘技术[J]. 软件学报, 2007, 18(11): 2766-2781.ZHU Yangyong, XIONG Yun. DNA sequence data mining technique[J]. Journal of Software, 2007, 18(11): 2766-2781.
[2] 贺炜, 潘泉, 陈玉春, 等. 关联规则挖掘与因果关系发现的比较研究[J]. 模式识别与人工智能, 2005, 18(3): 328-333.HE Wei, PAN Quan, CHEN Yuchun, et al. A Comparison between association rule data mining and causal discovery[J]. Pattern Recognition and Artificial Intelligence, 2005, 18(3): 328-333.
[3] 毛宇星, 陈彤兵, 施伯乐. 一种高效的多层和概化关联规则挖掘方法[J]. 软件学报, 2011, 22(12): 2965-2980. MAO Yuxing, CHEN Tongbing, SHI Bole. Efficient method for mining multiple-level and generalized association rules[J]. Journal of Software, 2011, 22(12): 2965-2980.
[4] 夏国恩. 客户流失预测的现状与发展研究[J]. 计算机应用研究, 2010, 27(2): 413-416.XIA Guoen. Research on current situation and development of customer churn prediction[J]. Application Research of Computers, 2010, 27(2): 413-416.
[5] KIM H S, YOON C H. Determinants of subscriber churn and customer loyalty in the Korean mobile telephony market[J]. Telecommunications Policy, 2004, 28(9/10): 751-765.
[6] MOZER M C, WOLNIEWICZ R, GRIMES D B, et al. Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry[J]. IEEE Transactions on Neural Networks, 2000, 11(3): 690-696.
[7] 邝涛, 张倩. 改进支持向量机在电信客户流失预测的应用[J]. 计算机仿真, 2011, 28(7): 329-332. KUANG Tao, ZHANG Qian. Application of telecom customer churn prediction based on improved support vector machine[J]. Computer Simulation, 2011, 28(7): 329-332.
[8] FOX C, LAPPIN S. Foundations of intensional semantics[M]. New York: Wiley-Blackwell, 2008: 78-82.
[9] TRIANTAPHYLLOU E. Data mining and knowledge discovery via logic-based methods: theory, algorithms, and applications[M]. New York: Springer, 2010.
[10] 蒋盛益, 李霞, 郑琪. 数据挖掘原理与实践[M]. 北京: 电子工业出版社, 2013: 211-212.
[11] 王鑫, 王洪国, 王珺, 等. 数据挖掘中聚类方法比较研究[J]. 计算机技术与发展, 2006, 16(10): 20-22.WANG Xin, WANG Hongguo, WANG Jun, et al. Comparison of clustering methods in data mining[J]. Computer Technology and Development, 2006, 16(10): 20-22.
[12] 张净, 孙志挥, 杨明, 等. 基于网格和密度的海量数据增量式离群点挖掘算法[J]. 计算机研究与发展, 2011, 48(5): 823-830.ZHANG Jing, SUN Zhihui, YANG Ming, et al. Fast incremental outlier mining algorithm based on grid and capacity[J]. Journal of Computer Research and Development, 2011, 48(5): 823-830.
[13] 胡文瑜, 孙志挥, 吴英杰. 数据挖掘取样方法研究[J]. 计算机研究与发展, 2011, 48(1): 45-54. HU Wenyu, SUN Zhihui, WU Yingjie. Study of sampling methods on data mining and stream mining[J]. Journal of Computer Research and Development, 2011, 48(1): 45-54.

备注/Memo

收稿日期:2014-4-27;改回日期:。
基金项目:国家“863”计划重大项目(2013AA01A212);国家自然科学基金资助项目(61272067, 61104156);广东省自然科学基金资助项目(9451009001002777).
作者简介:梁路,女,1980年生,副教授、博士,中国计算机学会协同计算专业委员会委员.主要研究方向为协同计算、云计算和数据挖掘.主持和参与国家级、省级自然科学基金及科技计划项目,以及校企合作产学研项目多项.2011年获广东省科学技术二等奖.发表学术论文30余篇.王彪,男,1989年生,硕士研究生,主要研究方向为数据挖掘及协同计算.王剑辉,男,1990年生,硕士研究生,主要研究方向为数据挖掘.
通讯作者:王彪. E-mail: wangbiao_gdut@163.com.

更新日期/Last Update: 2015-07-15
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com