[1]唐坤,韩斌.一种基于参考点距离的SIFT特征点匹配算法[J].智能系统学报,2015,10(3):376-380.[doi:10.3969/j.issn.1673-4785.201311020]
 TANG Kun,HAN Bin.A SIFT matching algorithm based on the distance to reference point[J].CAAI Transactions on Intelligent Systems,2015,10(3):376-380.[doi:10.3969/j.issn.1673-4785.201311020]
点击复制

一种基于参考点距离的SIFT特征点匹配算法

参考文献/References:
[1] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[2] 吴伟交, 王敏, 黄心汉, 等. 基于向量夹角的SIFT特征点匹配算法[J]. 模式识别与人工智能, 2013, 26(1): 123-127.WU Weijiao, WANG Min, HUANG Xinhan, et al. SIFT feature matching algorithm based on vector angle. Pattern Recognition and Artificial Intelligence, 2013, 26(1): 123-127.
[3] KRYSTIAN M, CORDELIA S. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
[4] GIONIS A, INDYK P, MOTWANI R. Similarity search in high dimensions via hashing[C]//Proceedings of the 25th International Conference on Very Large Data Bases. San Francisco, USA, 1999: 518-529.
[5] BEIS J S, LOWE D G. Shape indexing using approximate nearest-neighbor search in high-dimensional spaces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico, 1997: 1000-1006.
[6] FERHATOSMANOGLU H, TUNCEL E, AGRAWAL D, et al. Vector approximation based indexing for non-uniform high dimensional data sets[C]//Proceedings of the International Conference on Information and Knowledge Management. McLean, USA, 2000: 202-209.
[7] WEBER R, SCHEK H J, BLOTT S. A quantitative analysis and performance study for similarity-search methods in high dimensional spaces[C]//Proceedings of the International Conference on Very Large Databases. New York, 1998: 194-205.
[8] JAGADISH H V, OOI B C, TAN K L, et al. IDistance: an adaptive B+-tree based indexing method for nearest neighbor search[J]. ACM Transactions on Database Systems, 2005, 30(2): 364-398.
[9] AUCLAIR A, COHEN L D, VINCENT N. How to use SIFT vectors to analyze an image with database templates[C]//Proceedings of the 5th International Workshop on Adaptive Multimedia Retrieval. Paris, France, 2008: 224-236.
[10] SLANEY M, CASEY M. Locality-sensitive hashing for finding nearest neighbors[J]. IEEE Signal Processing Magazine, 2008, 25(2): 128-131.
[11] 张军旗, 周向东, 王梅, 等. 基于聚类分解的高维度量空间索引B+-tree[J]. 软件学报, 2008, 19(6): 1401-1412.ZHANG Junqi, ZHOU Xiangdong, WANG Mei, et al. Cluster splitting based high dimensional metric space index B+-tree[J]. Journal of Software, 2008, 19(6): 1401-1412.
[12] 杨恒, 王庆, 何周灿. 面向高维图像特征匹配的多次随机子向量量化哈希算法[J]. 计算机辅助设计与图形学学报, 2010, 22(3): 494-502.YANG Heng, WANG Qing, HE Zhoucan. Mutiple randomized sub-vectors quantization hashing for high-dimensional image feature matching[J]. Journal of Computer-Aided Deasign & Computer Graphics, 2010, 22(3): 494-502.
[13] LOWE D. OpenSIFT—An open-source SIFT library.[2013-11-15]. http://robwhess.github.io/opensift/.
[14] The Visual Geometry Group. Affine covariant features. (2007-07-15)[2013-11-15]. http://www.robots.ox.ac.uk/~vgg/research/affine/index.html.
相似文献/References:
[1]许可乐,唐涛,蒋咏梅.一种SAR图像稳健特征点提取方法[J].智能系统学报,2013,8(4):287.[doi:10.3969/j.issn.1673-4785.201304038]
 XU Kele,TANG Tao,JIANG Yongmei.A stable feature point extraction approach for SAR image registration[J].CAAI Transactions on Intelligent Systems,2013,8():287.[doi:10.3969/j.issn.1673-4785.201304038]
[2]唐坤,韩斌.一种自适应搜索范围的SIFT特征点快速匹配算法[J].智能系统学报,2014,9(6):723.[doi:10.3969/j.issn.1673-4785.201309037]
 TANG Kun,HAN Bin.A new fast algorithm of self-adaptive search scope for SIFT matching[J].CAAI Transactions on Intelligent Systems,2014,9():723.[doi:10.3969/j.issn.1673-4785.201309037]
[3]张文超,吕岳,文颖,等.几何信息与SIFT特征相结合的特定人手写关键词检测[J].智能系统学报,2014,9(5):544.[doi:10.3969/j.issn.1673-4785.201402032]
 ZHANG Wenchao,LYU Yue,WEN Ying,et al.Specific handwritten keyword spotting using geometric information and SIFT feature[J].CAAI Transactions on Intelligent Systems,2014,9():544.[doi:10.3969/j.issn.1673-4785.201402032]

备注/Memo

收稿日期:2013-11-28;改回日期:。
基金项目:国家自然科学基金资助项目(61374195);中央高校基本科研业务费专项资金资助项目;江苏省普通高校研究生科研创新计划资助项目(KYLX_0180).
作者简介:唐坤,男,1988年生,博士研究生,主要研究方向为数字图像处理、智能交通.韩斌,男,1968年生,教授,博士,主要研究方向为数字图像处理、智能检测、并行计算.
通讯作者:唐坤. E-mail: tkpaperzc@sina.cn.

更新日期/Last Update: 2015-07-15
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com