[1]曲彦光,张勤,朱群雄.动态不确定因果图在化工系统动态故障诊断中的应用[J].智能系统学报,2015,10(3):354-361.[doi:10.3969/j.issn.1673-4785.201503012]
QU Yanguang,ZHANG Qin,ZHU Qunxiong.Application of dynamic uncertain causality graph to dynamic fault diagnosis in chemical processes[J].CAAI Transactions on Intelligent Systems,2015,10(3):354-361.[doi:10.3969/j.issn.1673-4785.201503012]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
10
期数:
2015年第3期
页码:
354-361
栏目:
学术论文—智能系统
出版日期:
2015-06-25
- Title:
-
Application of dynamic uncertain causality graph to dynamic fault diagnosis in chemical processes
- 作者:
-
曲彦光1, 张勤2, 朱群雄1
-
1. 北京化工大学 信息科学与技术学院, 北京 100029;
2. 北京航空航天大学 计算机学院, 北京 100083
- Author(s):
-
QU Yanguang1, ZHANG Qin2, ZHU Qunxiong1
-
1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
2. School of Computer Science and Engineering, Beihang University, Beijing 100083, China
-
- 关键词:
-
化工过程; 动态不确定因果图; 故障诊断; TE过程; 概率推理
- Keywords:
-
chemical process; dynamic uncertain causality graph; fault diagnosis; Tennessee Eastman (TE) process; probabilistic reasoning
- 分类号:
-
TP391.41
- DOI:
-
10.3969/j.issn.1673-4785.201503012
- 文献标志码:
-
A
- 摘要:
-
为了避免化工工程中经济及生命的损失,有效及时检测出故障是十分必要的.动态不确定因果图(DUCG)是一种根据有向图实现动态不确定因果关系表达与推理的方法.其处理信息的特性,对于目前规模庞大的化工过程故障诊断有着自身的优势.因此运用DUCG,通过构建对象系统知识库、对故障数据进行概率推理,实现化工过程的故障诊断,并针对化工过程的震荡信号,对原DUCG系统的数据发送模块做出改进,使之适用范围更全面.为了验证DUCG理论的有效性,采用TE过程作为实验对象,建立包含54个变量、114条因果关系的DUCG模型.该模型对TE过程中的故障得到较高诊断排序概率,诊断正确概率达到了100%,与贝叶斯网络的平均诊断正确概率79.71%相比,说明了DUCG是一种行之有效的方法.
- Abstract:
-
In chemical processes, it is necessary to effectively diagnose the fault on time in order to avoid losses of economy and lives. Dynamic uncertain causality graph is a method, which represents and infers the dynamic, uncertain causalities of the process system according to directed graph. Based on the characteristics of processing information, DUCG has its own advantages for fault diagnosis in chemical processes on a large scale. Therefore, this article applies DUCG to realize fault diagnosis of chemical processes by constructing the object system knowledge base and probabilistic reasoning on fault data. The data transmission module of the former DUCG system is improved to deal with the vibrational signals in the chemical process, and to widen the scope of application. The Tennessee Eastman (TE) simulator is taken as the experimental subject to test the effectiveness of DUCG methodology and software. 54 variables and 114 causalities are included in the constructed DUCG knowledge model. According to this model, all the failures simulated by TE are diagnosed in a high probability of ranking. The correct diagnosis rate is 100%. In comparison of Bayesian Network (BN), the mean correct diagnosis rate is 79.71% reportedly, showing that DUCG is an effective method.
备注/Memo
收稿日期:2015-3-9;改回日期:。
基金项目:国家自然科学基金资助项目(61273330;61473026).
作者简介:曲彦光,男,1990年生,硕士研究生,主要研究方向为动态不确定因果图及故障诊断. 张勤,男,1956年生,教授,博士生导师,博士,主要研究方向为动态不确定因果图理论及应用、系统可靠性评价与管理、知识产权理论及应用等.任国际原子能机构《与安全有关的专家系统》中方课题负责人,中国人工智能学会不确定性人工智能专业委员会主任.朱群雄,男,1960年生,教授,博士生导师,博士,主要研究方向为智能建模与优化、数据挖掘与故障诊断.主持完成国家自然科学基金、国家“863”计划、省部级科研和企业工程项目20余项,获省部级科技进步一等奖2项、二等奖1项,发明专利和国家软件著作权10余项,发表学术论文200余篇.
通讯作者:张勤. E-mail: zhangqin@buaa.edu.cn. 朱群雄. E-mail: zhuqx@mail.buct.edu.cn.
更新日期/Last Update:
2015-07-15