[1]胡文彬,潘祝山,纪兆辉.模式匹配不确定性的多因素集结度量[J].智能系统学报,2015,10(2):286-292.[doi:10.3969/j.issn.1673-4785.201405061]
HU Wenbin,PAN Zhushan,JI Zhaohui.Uncertain measure for schema matching based on the aggregation of uncertain factors[J].CAAI Transactions on Intelligent Systems,2015,10(2):286-292.[doi:10.3969/j.issn.1673-4785.201405061]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
10
期数:
2015年第2期
页码:
286-292
栏目:
学术论文—机器感知与模式识别
出版日期:
2015-04-25
- Title:
-
Uncertain measure for schema matching based on the aggregation of uncertain factors
- 作者:
-
胡文彬, 潘祝山, 纪兆辉
-
淮海工学院 计算机工程学院, 江苏 连云港 222005
- Author(s):
-
HU Wenbin, PAN Zhushan, JI Zhaohui
-
School of Computer Engineering, Huaihai Institute of Technology, Lianyungang 222005, China
-
- 关键词:
-
模式定义; 模式分析; 模式匹配; 不确定性分析; 数据不确定性度量; 度量方法; 决策分析; 熵; 集结评估方法
- Keywords:
-
schema definition; schema analysis; schema matching; uncertainty analysis; measured data uncertainty; measurement method; decision analysis; entropy; aggregation estimation method
- 分类号:
-
TP18;TP391
- DOI:
-
10.3969/j.issn.1673-4785.201405061
- 文献标志码:
-
A
- 摘要:
-
为了能够有效度量模式匹配的不确定性,提出了一个模式匹配不确定性的度量模型,根据不确定性因素间的关系提出了一个集结算子。使用全知熵度量语义匹配和属性匹配的不确定性,引入过程不确定性的度量方法度量匹配决策过程的不确定性。使用多因素集结算子判断各因素的影响程度,并可合成各度量结果。实验证明,所提模型和方法能够有效度量模式匹配的不确定性,且具有高效性和可扩展性。
- Abstract:
-
To measure efficiently uncertainty of schema matching, a measure model based on all uncertain factors was proposed and an aggregation operator was given according to the relations of uncertain factors. A measure method of semantic matching and attribute matching based on all known entropy uncertain ratio was designed. A measure algorithm of process uncertainty was introduced to measure uncertainty of a decision making process. The aggregation operator based on relationships between uncertain factors was proposed to determine influence degree of uncertain factors and merge all measure values in the measure process. The real world examples illustrate that the proposed model and methods can completely reflect three factors of uncertainty and can measure efficiently uncertainty for schema matching. The proposed methods are efficient and scalable.
备注/Memo
收稿日期:2014-6-6;改回日期:。
基金项目:国家自然科学基金资助项目(60903027);江苏省自然科学重大研究项目资助项目(BK2011023);江苏省自然科学基金资助项目(BK2011370).
作者简介:胡文彬,女,1976年生,博士,中国计算机学会会员,主要研究方向为数据集成、社会网络、隐私保护,作为主要成员完成省级课题1项,参与完成市级课题2项。发表学术论文10余篇,其中被EI检索3篇;潘祝山,男,1968年生,副教授,主要研究方向为人工智能、确定性理论。参与省市级课题多项;纪兆辉,男,1971年生,副教授,中国计算机学会高级会员,主要研究方向为数据挖掘、语义Web、多Agent等。发表学术论文20余篇,主持、参与省市级科研课题10余项。
通讯作者:胡文彬.E-mail:hwb1008@163.com.
更新日期/Last Update:
2015-06-15