[1]卿铭,孙晓梅.一种新的聚类有效性函数:模糊划分的模糊熵[J].智能系统学报,2015,10(1):75-80.[doi:10.3969/j.issn.1673-4785.201410004]
QING Ming,SUN Xiaomei.A new clustering effectiveness function: fuzzy entropy of fuzzy partition[J].CAAI Transactions on Intelligent Systems,2015,10(1):75-80.[doi:10.3969/j.issn.1673-4785.201410004]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
10
期数:
2015年第1期
页码:
75-80
栏目:
学术论文—人工智能基础
出版日期:
2015-03-25
- Title:
-
A new clustering effectiveness function: fuzzy entropy of fuzzy partition
- 作者:
-
卿铭1, 孙晓梅2
-
1. 西南交通大学 数学学院, 四川 成都 600031;
2. 河南工程学院 数学与物理科学系, 河南 郑州 451191
- Author(s):
-
QING Ming1, SUN Xiaomei2
-
1. School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China;
2. Department of Mathematical and Physical Science, Henan Institution of Engineering, Zhengzhou 451191, China
-
- 关键词:
-
模糊C均值聚类; 模糊划分的模糊熵; 聚类有效性; 聚类分析; 模糊划分; 模糊熵; 熵函数; 模糊集
- Keywords:
-
fuzzy C-means clustering; fuzzy entropy of fuzzy partition; clustering effectiveness; clustering analysis; fuzzy partition; fuzzy entropy; entropy function; fuzzy set
- 分类号:
-
TPO235
- DOI:
-
10.3969/j.issn.1673-4785.201410004
- 文献标志码:
-
A
- 摘要:
-
模糊聚类分析结果是否合理的问题属于模糊聚类有效性判定课题,其核心是模糊聚类有效性函数的构造。文中基于序关系定义了模糊划分模糊熵来描述模糊划分的模糊程度。考虑到现有的一类有效的模糊聚类有效性函数就是基于数据集的模糊划分的,因此文中也用模糊划分的模糊熵作为聚类有效性函数。实验表明,模糊划分的模糊熵作为模糊聚类的有效性函数是合理的、可行的。
- Abstract:
-
In this paper, the determination that whether a fuzzy clustering analysis result is reasonable or not is decided by the effectiveness of fuzzy clustering and its core is the construction of fuzzy clustering effectiveness function. This paper proposed a new concept of fuzzy entropy for a fuzzy partition to describe fuzzy degree of a fuzzy partition based on an order relation. Fuzzy entropy for a fuzzy partition is also considered as a clustering effectiveness function because some existing fuzzy clustering effectiveness functions are based on fuzzy partition of data sets. The experiments demonstrated that it is reasonable and practicable to utilize fuzzy entropy for a fuzzy partition as the effectiveness function of a fuzzy clustering.
备注/Memo
收稿日期:2014-10-8;改回日期:。
基金项目:中央高校基础研究基金资助项目(2682014ZT28).
作者简介:卿铭,男,1971年生,副教授,主要研究方向为智能信息处理、系统可信性分析,发表学术论文20余篇;孙晓梅,女,1962年生,副教授,主要研究方向为组合最优化。
通讯作者:卿铭.E-mail:qingming@swjtu.edu.cn.
更新日期/Last Update:
2015-06-16