[1]卿铭,孙晓梅.一种新的聚类有效性函数:模糊划分的模糊熵[J].智能系统学报,2015,10(1):75-80.[doi:10.3969/j.issn.1673-4785.201410004]
 QING Ming,SUN Xiaomei.A new clustering effectiveness function: fuzzy entropy of fuzzy partition[J].CAAI Transactions on Intelligent Systems,2015,10(1):75-80.[doi:10.3969/j.issn.1673-4785.201410004]
点击复制

一种新的聚类有效性函数:模糊划分的模糊熵

参考文献/References:
[1] 范九伦. 模糊聚类新算法与聚类有效性问题研究[D]. 西安:西安电子科技大学, 1998: 52-77.FAN Jiulun. The studies on some new algorithms of fuzzy clustering and clustering validity [D]. Xian: Xidian University, 1998: 1-165.
[2] 范九伦,吴成茂.可能性划分系数和模糊变差相结合的聚类有效性函数[J].电子与信息学报, 2002, 24(8): 1017-1021. FAN Jiulun, WU Chengmao. Clustering validity function based on possibilistic partition coefficient combined with fuzzy variation [J]. Journal of Electronics and Information Technology, 2002, 24(8): 1017-1021.
[3] 范九伦,吴成茂.基于模糊熵的聚类有效性函数[J]. 模式识别与人工智能,2001,14(4): 390-394. FAN Jiulun, WU Chengmao. Clustering validity function based on fuzzy entropy [J]. Pattern Recongnition and Artificial Intelligence, 2001,14(4): 390-394.
[4] DUN J C. Some recent investigations of a new fuzzy partitions algorithm and its application to classification problems [J]. J Cybernet, 1974(4): 1-15.
[5] DAVE R N. Validating fuzzy partition obtained through c-shells clustering [J]. Pattern Recognition Letters, 1996(17): 613-623.
[6] ROBUBENS M. Pattern classification problems and fuzzy sets [J]. Fuzzy Sets Systems, 1978, 1: 239-253.
[7] BEZDEK J C, HARRIS J. Fuzzy partitions and relations—an axiomatic basis for clustering[J]. Fuzzy Sets and Systems, 1978(1): 111-126.
[8] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms [M]. New York:Plenum Press, 1981: 105-133.
[9] PAL N R, BEZDEK J C. On cluster validity for fuzzy C-means model [J]. IEEE Trans Fuzzy Systems, 1995(3): 370-379.
[10] ZHANG Huangxiang, LU Jin. Creating ensembles of classifiers via fuzzy clustering and deflection [J]. Fuzzy Sets and Systems, 2010(160): 1790-1802.
[11] YU Jian, YANG Minshen, LEE E S. Sample-weighted clustering methods [J]. Computers and Mathematics with Applications, 2011(62): 2200-2208.
[12] 岳士弘,黄媞,王鹏龙. 基于矩阵特征值分析的模糊聚类有效性指标[J]. 天津大学学报,2014, 47(8): 689-696.YUE Shihong, HUANG Ti, WANG Penglong. Matrix eigenvalue analysis-based clustering validity index [J]. Journal of Tianjin University, 2014, 47(8): 689-696.
[13] 张大庆,徐再花. 一种新的模糊聚类有效性指标[J]. 沈阳农业大学学报, 2012, 14(5): 636-639.ZHANG Daqing, XU Zaihua. A new validity index for fuzzy clustering [J]. Journal of Shenyang Agricultural University, 2012, 14(5): 636-639.
[14] 朱文婕,吴楠,胡学钢. 一个改进的模糊聚类有效性指标[J]. 计算机工程与应用, 2011, 45(5): 206-209.ZHU Wenjie, WU Nan, HU Xuegang. Improved cluster validity index for fuzzy clustering [J]. Computer Engineering and Applications, 2011, 45(5): 206-209.
[15] 胡春春,孟令奎,谢文君,等. 空间数据模糊聚类的有效性评价[J].武汉大学学报, 2007, 32(8): 740-743.HU Chunchun, MENG Lingkui, XIE Wenjun, et al. Validity measure on fuzzy clustering for spatial data [J]. Journal of Wuhan University, 2007, 32(8): 740-743.
[16] 郑弘亮,徐本强,赵晓慧,等. 新的模糊聚类有效性指标[J]. 计算机应用, 2014, 34(8): 2166-2169.ZHENG Hongliang, XU Benqiang, ZHAO Xiaohui, et al. Novel validity index for fuzzy clustering [J]. Journal of Computer Applications, 2014, 34(8): 2166-2169.
[17] 王丽娜,马晓晓. 一种改进的模糊聚类有效性指标[J]. 微电子学与计算机, 2014, 31(4): 68-74.WANG Lina, MA Xiaoxiao. An improved validity index for clustering [J]. Microelectronics and Computer, 2014, 31(4): 68-74.
[18] 张宇献,刘通,董晓,等. 基于改进划分系数的模糊聚类有效性函数[J]. 沈阳工业大学学报,2014, 36(4): 431-435.ZHANG Yuxian, LIU Tong, DONG Xiao, et al. Validity function for fuzzy clustering based on improved partition coefficient [J]. Journal of Shenyang University of Technology, 2014, 36(4): 431-435.
[19] 普运伟,金炜东,朱明,等. 核模糊C均值算法的聚类有效性研究[J]. 计算机科学,2007, 34(2): 207-210.PU Yunwei, JIN Weidong, ZHU Ming, et al. On cluster validity for kernelized fuzzy C-means algorithm [J]. Computer Science, 2007, 34(2): 207-210.
[20] 姚晓红,任珂珂,赵花妮,等. 一种新的模糊聚类有效性指标的验证[J]. 洛阳理工学院学报, 2012, 22(3): 76-79.YAO Xiaohong, REN Keke, ZHAO Huani, et al. The verification of a new fuzzy clustering validity index [J]. Journal of Luoyang Institute of Science and Technology, 2012, 22(3): 76-79.

备注/Memo

收稿日期:2014-10-8;改回日期:。
基金项目:中央高校基础研究基金资助项目(2682014ZT28).
作者简介:卿铭,男,1971年生,副教授,主要研究方向为智能信息处理、系统可信性分析,发表学术论文20余篇;孙晓梅,女,1962年生,副教授,主要研究方向为组合最优化。
通讯作者:卿铭.E-mail:qingming@swjtu.edu.cn.

更新日期/Last Update: 2015-06-16
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com