[1]李俊泽,袁小芳,张振军,等.一种基于二维GARCH模型的图像去噪方法[J].智能系统学报,2015,10(1):62-67.[doi:10.3969/j.issn.1673-4785.201403066]
LI Junze,YUAN Xiaofang,ZHANG Zhenjun,et al.A method of image denoising based on two-dimensional GARCH model[J].CAAI Transactions on Intelligent Systems,2015,10(1):62-67.[doi:10.3969/j.issn.1673-4785.201403066]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
10
期数:
2015年第1期
页码:
62-67
栏目:
学术论文—机器感知与模式识别
出版日期:
2015-03-25
- Title:
-
A method of image denoising based on two-dimensional GARCH model
- 作者:
-
李俊泽1, 袁小芳1, 张振军1, 王耀南1, 王国锋2
-
1. 湖南大学 电气与信息工程学院, 湖南 长沙 410082;
2. 中国公路工程咨询集团有限公司, 北京 100097
- Author(s):
-
LI Junze1, YUAN Xiaofang1, ZHANG Zhenjun1, WANG Yaonan1, WANG Guofeng2
-
1. School of Electrical and Information Engineering, Hunan University, Changsha 410082, China;
2. China Highway Engineering Consulting Corporation, Beijing 100097, China
-
- 关键词:
-
小波变换; 统计建模; 二维GARCH模型; 果蝇优化算法; 图像去噪
- Keywords:
-
wavelet transform; statistical modeling; two-dimensional GARCH model; FOA; image denoising
- 分类号:
-
TP751.1
- DOI:
-
10.3969/j.issn.1673-4785.201403066
- 文献标志码:
-
A
- 摘要:
-
提出了一种基于小波系数统计模型的图像去噪方法。该方法利用二维广义自回归条件异方差(2D-GARCH)模型对小波系数进行建模,这种小波系数模型能够更好地利用小波系数“尖峰厚尾”的分布特性和系数间的相关性等重要特性。利用基于果蝇优化算法的极大似然估计(ML Estimation based on FOA)代替传统的线性规划方法求解模型参数,提高了建模的准确性。在此基础上再采用最小均方误差估计(MMSE Estimation)对未受噪声污染的原始图像的小波系数进行估计。实验结果表明,与当前主流的去噪方法相比,该算法能更有效地去除图像中的噪声,获得更高的峰值信噪比(PSNR)和较好的视觉效果。
- Abstract:
-
An image denoising method based on the statistical model for wavelet coefficients is proposed. It uses a two-dimensional Generalized Autoregressive Conditional Heteroscedasticity (2D-GARCH) model for modeling the wavelet coefficients. A novel wavelet coefficients model is also used to make better use of the important characteristics of wavelet coefficients such as "sharp peak and heavy tailed" marginal distribution and the dependencies between the coefficients. It utilizes maximum likelihood estimation based on fruit fly optimization algorithm (ML Estimation based on FOA) to estimate the model parameters instead of using traditional linear programming in order to improve the accuracy of the modeling. The minimum mean square error estimation (MMSE Estimation) is applied to estimating the parameters of the wavelet coefficients of the original image that is not affected by noise. Experimental results showed that compared to the present widely-used denoising methods the proposed method is more effective in image denoising, and it may achieve higher peak signal-to-noise ratio (PSNR) and good visuality.
备注/Memo
收稿日期:2014-3-25;改回日期:。
基金项目:国家“863”计划资助项目(2012AA112312).
作者简介:李俊泽,男,1988年生,硕士研究生,主要研究方向为图像处理;袁小芳,男,1979年生,副教授,主要研究方向为智能控制理论与应用、电动汽车控制、新能源发电,发表学术论文30余篇;张振军,男,1981年生,讲师,硕士生导师,主要研究方向为机器视觉与智能交通、大规模机器学习与海量数据分析。
通讯作者:张振军.E-mail:zhenjun@hnu.edu.cn.
更新日期/Last Update:
2015-06-16