[1]肖艳丽,张振宇,杨文忠.移动数据的交通出行方式识别方法[J].智能系统学报,2014,9(5):536-543.[doi:10.3969/j.issn.1673-4785.201404045]
 XIAO Yanli,ZHANG Zhenyu,YANG Wenzhong.Research of the identification methods for transportation modes based on mobile data[J].CAAI Transactions on Intelligent Systems,2014,9(5):536-543.[doi:10.3969/j.issn.1673-4785.201404045]
点击复制

移动数据的交通出行方式识别方法

参考文献/References:
[1] MIAO Lin, HSU Wenjing. Mining GPS data for mobility patterns:a survey[EB/OL].[2014-06-20] http://www.sciencedirect.com/science/article/pii/S1574119213000825.
[2] 谢幸, 郑宇.基于地理信息的用户行为理解[J].计算机学会通讯, 2008, 4(10):45-51.XIE Xing, ZHEN Yu.To understand user behavior based on geographical information[J].Communications of the CCF, 2008, 4(10):45-51.
[3] 张治华.基于GPS轨迹的出行信息提取研究[D].上海:华东师范大学, 2010:15-51.ZHANG Zhihua. Deriving trip information from gps trajectories[D].Shanghai:East China Normal University, 2010:15-51.
[4] YANG Jun. Toward physical activity diary:motion recognition using simple acceleration features with mobile phones[C]//Proceedings of the 1st International workshop on Interactive multimedia for consumer electronics. Beijing:ACM Press, 2009:1-10.
[5] RAVI N, DANDEKAR N, MYSORE P, et al. Activity recognition from accelerometer data[C]//Proceedings of the 17th Conference on Innovative Applications of Artificial Intelligence. Pittsburgh:AAAI Press, 2005:1541-1546.
[6] WANG S, CHEN C, MA J. Accelerometer based transportation mode recognition on mobile phones[C]//2010 Asia-Pacific Conference on Wearable Computing Systems (APWCS).Shenzhen, China, 2010:44-46.
[7] WANG H, CALABRESE F, DI LORENZO G, et al. Transportation mode inference from anonymized and aggregated mobile phone call detail records[C]//2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC). Piscataway:IEEE, 2010:318-323.
[8] XU Dafeng, SONG Guojie, GAO Peng, et al. Transportation modes identification from mobile phone data using probabilistic models[C]//Proceedings of the 7th International Conference on Advanced Data Mining and Applications. Beijing:China, 2011:359-371.
[9] MULLER IAH. Practical activity recognition using GSM data[C]//Proceedings of the 5th International Semantic Web Conference (ISWC).Athens, 2006:1-8.
[10] ANDERSON I, MULLER H. Exploring GSM data in pervasive environments[J]. International Journal of Pervasive Computing and Communications, 2008, 4(1):8-25.
[11] SOHN T, VARSHAVSKY A, LAMARCA A, et al. Mobility detection using everyday gsm traces[C]//UbiComp 2006:Ubiquitous Computing. Orange County:Springer Berlin Heidelberg, 2006:212-224.
[12] GONZALEZ P, WEINSTEIN J, BARBEAU S, et al. Automating mode detection using neural networks and assisted GPS data collected using gps-enabled mobile phones[J].Intelligent Transport Systems, 2010, 4(1):37-49.
[13] PATTERSON DJ, LIAO Like, WANG Longhao, et al. Inferring high-level behavior from low-level sensors[C]//UbiComp 2003:Ubiquitous Computing. Seattle:Springer Berlin Heidelberg, 2003:73-89.
[14] ZHENG Yu, LIU Like, WANG Longhao, et al. Learning transportation mode from raw GPS data for geographic applications on the web[C]//Proceedings of the 17th International Conference on World Wide Web. Beijing:ACM, 2008:247-256.
[15] ZHENG Yu, CHEN Yukun, LI Quannan, et al. Understanding transportation modes based on GPS data for web applications[J].ACM Transactions on the Web(TWEB), 2010, 4(1):1-36.
[16] ZHENG Yu, LI Quannan, CHEN Yingying, et al. Understanding mobility based on GPS data[C]//Proceedings of the 10th International Conference on Ubiquitous Computing. South Korea ACM, 2008:312-321.
[17] LIN M, HSU W J, LEE Z Q. Detecting modes of transport from unlabelled positioning sensor data[J].Journal of Location Based Services, 2013:1-19.
[18] LIAO L. Location-based activity recognition[D].Washington:University of Washington, 2006:1-35.
[19] LAFFERTY J, MCCALLUM A, PEREIRA FCN. Conditional random fields:Probabilistic models for segmenting and labeling sequence data[C]//Proceedings of International Conference on Machine Learning. Williams Town:ACM, 2001:282-289.
[20] LIAO L, PATTERSON DJ, FOX D, et al. Learning and inferring transportation routines[J]. Artificial Intelligence, 2007, 171(5):311-331.
[21] SUN Zhanbo, BAN Xungang. Vehicle classification using GPS data[J].Transportation Research Part C:Emerging Technologies, 2013, 37:102-117.
[22] 张德欣, 刘小明, 孙立光, 等. 基于大规模定位数据的出行方式模糊判别研究[J]. 交通信息与安全, 2011, 29(2):1-4. ZHANG Dexin, LIU Xiaoming, SUN Liguang, et al. Fuzzy classification of trip mode based on large scale location data[J]. Journal of Transport Information and Safety, 2011, 29(2):1-4.
[23] PARKKA J, ERMES M, KORPIPAA P, et al. Activity classification using realistic data from wearable sensors[J].IEEE Transactions on, 2006, 10(1):119-128.
[24] ERMES M, PARKKA J, MANTYJARVI J, et al. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions[J].IEEE Transactions on Information Technology in Biomedicine, 2008, 12(1):20-26.
[25] BAO L, INTILLE SS. Activity recognition from user-annotated acceleration data[C]//Proceceedings of the 2nd International Conference on Pervasive Computing. Vienna:Springer Berlin Heidelberg, 2004:1-17.
[26] LESTER J, CHOUDHURY T, BORRIELLO G.A practical approach to recognizing physical activities[M]//Pervasive Computing. Berlin:Springer Berlin Heidelberg, 2006:1-16
[27] TROPED P J, OLIVEIRA M S, MATTHEWS C E, et al. Prediction of activity mode with global positioning system and accelerometer data[J].Medicine and Science in Sports and Exercise, 2008, 40(5):972-979.
[28] REDDY S, MUN M, BURKE J, et al. Using mobile phones to determine transportation modes[J].ACM Transactions on Sensor Networks(TOSN), 2010, 6(2):13-40.
[29] MILUZZO E, LANE ND, FODOR K, et al. Sensing meets mobile social networks:the design, implementation and evaluation of the CenceMe application[C]//Proceedings of the 6th ACM Conference on Embedded Network sensor Systems. Raleigh:ACM Press, 2008:337-350.
[30] MUN M, ESTRIN D, BURKE J, et al. Parsimonious mobility classification using GSM and WiFi traces[C]//Proceedings of the 5th Workshop on Embedded Networked Sensors (HotEmNets).Charlottesville:ACM, 2008:1-5.
[31] MUN MY, SEO YW. Everyday mobility context classification using radio beacons[C]//Consumer Communications and Networking Conference.Las Vegas:IEEE, 2013:112-117.
[32] STOPHER P, FITZGERALD C, ZHANG J. Search for a global positioning system device to measure person travel[J]. Transportation Research Part C:Emerging Technologies, 2008, 16(3):350-369.
[33] STENNETH L, WOLFSON O, YU P S, et al. Transportation mode detection using mobile phones and GIS information[C]//Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Chicago:ACM, 2011:54-63.
[34] TSUI S Y A, SHALABY A S. Enhanced system for link and mode identification for personal travel surveys based on global positioning systems[J].Transportation Research Record:Journal of the Transportation Research Board, 2006, 1972(1):38-45.
[35] GONG H, CHEN C, BIALOSTOZKY E, et al. A GPS/GIS method for travel mode detection in New York City[J]. Computers, Environment and Urban Systems, 2012, 36(2):131-139.
[36] LIAO L, PATTERSON D J, FOX D, et al. Learning and inferring transportation routines[J].Artificial Intelligence, 2007, 171(5):311-331.
[37] CHUNG E H, SHALABY A.A trip reconstruction tool for GPS-based personal travel surveys[J].Transportation Planning and Technology, 2005, 28(5):381-401.
[38] 周小红, 刘松. 基于GIS的城市交通出行方式自动识别模型 [J].现代测绘, 2013, 36(3):46-48.
[39] YAN Z, SUBBARAJU V, CHAKRABORTY D, et al. Energy efficient continuous activity recognition on mobile phones:an activity-adaptive approach[C]//2012 16th International Symposium on Wearable Computers (ISWC). Newcastle:IEEE, 2012:17-24.
[40] WANG Y I, LIN JIALIU, ANNAVARAM M, et al. A framework of energy efficient mobile sensing for automatic user state recognition[C]//Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services.ACM, Kraków, 2009:179-192.
[41] YU MC, YU T, LIN C J, et al. Low power and low cost sensor hub for transportation-mode detection[EB/OL].[2013-02-03]. Studio Engineering, HTC, Tech Rep, 2013.http://www.csie.ntu.edu.tw/cjlin/papers/transportation-mode/transportation.pdf.
[42] YU T, WANG S C, YU M C, et al. Careful use of machine learning methods is needed for mobile applications:a case study on transportation-mode detection[R]. Studio Engineering, HTC, 2013.
[43] MUNISANKAR M, NAGENDRA R. Transportation Mode Recognition with Zigbee Using Accelerometer[J]. International Journal of Emerging Technology and Advanced Engineering, 2012, 2(5):155-163.

备注/Memo

收稿日期:2014-04-23。
基金项目:国家自然科学基金资助项目(61262089,61262087);新疆教育厅高校教师科研计划重点资助项目(XJEDU2012I09);新疆大学博士毕业生科研启动基金资助项目(BS110127).
作者简介:张振宇, 男1964年生, 副教授, 主要研究方向为模式识别技术、数据挖掘、移动对等网络、机会网络等;杨文忠, 男, 1971年生, 博士, 副教授。主要研究方向为, 物联网、数据挖掘、信息安全等。
通讯作者:肖艳丽, 女, 1989年生, 主要研究方向为数据挖掘、模式识别技术等。E-mail:xiaoyanli1314@163.com.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com