[1]谭营,郑少秋.烟花算法研究进展[J].智能系统学报,2014,9(5):515-528.[doi:10.3969/j.issn.1673-4785.201409010]
 TAN Ying,ZHENG Shaoqiu.Recent advances in fireworks algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(5):515-528.[doi:10.3969/j.issn.1673-4785.201409010]
点击复制

烟花算法研究进展

参考文献/References:
[1] BENI G, WANG J. Swarm intelligence in cellular robotic systems[C]//Proceedings of NATO Advanced Workshop on Robots and Biological Systems. 1989:75-80.
[2] BENI G, WANG J. Swarm intelligence in cellular robotic systems[C]//Berlin:Springer, 1993:703-712.
[3] BONABEAU E, DORIGO M, THERAULAZ G. Swarm intelligence:from natural to artificial systems[M]. New York:Oxford University Press, 1999:1-15.
[4] KENNEDY J, EBERHART R C. Swarm intelligence[M]. Morgan Kaufmann, 2001:504-512.
[5] LIU Y, PASSINO K M. Swarm intelligence:literature overview[J]. Journal of Ohio State University, 2000:1-9.
[6] KRAUSE J, RUXTON G D, KRAUSE S. Swarm intelligence in animals and humans[J]. Trends in Ecology & Evolution, 2010, 25(1):28-34.
[7] REYNOLDS C W. Flocks, herds and schools:a distributed behavioral model[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4):25-34.
[8] COLORNI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies[C]//Proceedings of the First European Conference on Artificial Life. Paris, 1991:134-142.
[9] KENNEDY J, RUSSELL E.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Perth, WA, 1995:1942-1948.
[10] ENGELBRECHT A P. Fundamentals of computational swarm intelligence[M]. John Wiley & Sons, 2006:15-28.
[11] DORIGO M, BIRATTARI M, STUTZLE T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4):28-39.
[12] LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3):281-295.
[13] ZHAN Z H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2009, 39(6):1362-1381.
[14] XING B, GAO W J. Innovative computational intelligence:a rough guide to 134 clever algorithms[M]. Springer, 2014:250-260.
[15] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[16] LAUMANNS M. SPEA2:Improving the strength pareto evolutionary algorithm[J]. TIK-Report, 2001(103):1-21.
[17] LI X. A non-dominated sorting particle swarm optimizer for multiobjective optimization[C]//Genetic and Evolutionary Computation-GECCO 2003. Berlin:Springer, 2003:37-48.
[18] ZHOU Y, TAN Y. GPU-based parallel particle swarm optimization[C]//IEEE Congress on Evolutionary Computation. 2009:1493-1500.
[19] DING K, ZHENG S, TAN Y. A GPU-based parallel fireworks algorithm for optimization[C]//Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference. ACM, 2013:9-16.
[20] LI J, WANG X, HE R, et al. An efficient fine-grained parallel genetic algorithm based on GPU-accelerated[C]//International Conference on IFIP, Network and Parallel Computing Workshops. Liaoning, China, 2007:855-862.
[21] TAN Y, YU C, ZHENG S, et al. Introduction to fireworks algorithm[J]. International Journal of Swarm Intelligence Research, 2013, 4(4):39-70.
[22] TAN Y, ZHU Y. Fireworks algorithm for optimization[C]//Berlin:Springer, 2010:355-364.
[23] HASTIE T, TIBSHIRANI R, FRIEDMAN J, et al. The elements of statistical learning:data mining, inference and prediction[J]. The Mathematical Intelligencer, 2005, 27(2):83-85.
[24] LIU J, ZHENG S, TAN Y. Analysis on global convergence and time complexity of fireworks algorithm[C]//2014 IEEE Congress on Evolutionary Computation (CEC).Beijing, China, 2014:3207-3213.
[25] EBEHART R C, SHI Y. Comparison between genetic algorithms and particle swarm optimization[C]//Berlin:Springer, 1998:611-616.
[26] PEI Y, ZHENG S, TAN Y, et al. An empirical study on influence of approximation approaches on enhancing fireworks algorithm[C]//IEEE International Conference on Systems, Man, and Cybernetics. Seoul, South Korea, 2012:1322-1327.
[27] LIU J, ZHENG S, TAN Y. The improvement on controlling exploration and exploitation of firework algorithm[M]//Advances in Swarm Intelligence. Berlin:Springer, 2013:11-23.
[28] ZHENG S, JANECEK A, TAN Y. Enhanced fireworks algorithm[C]//2013 IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013:2069-2077.
[29] ZHENG S, JANECEK A, LI J, et al. Dynamic search in fireworks algorithm[C]//2014 IEEE Congress on Evolutionary Computation. Beijing, China, 2014:3222-3229.
[30] LI J, ZHENG S, TAN Y. Adaptive Fireworks Algorithm[C]//2014 IEEE Congress on Evolutionary Computation. Beijing, China, 2014:3214-3221.
[31] ZHENG Y J, XU X L, LING H F, et al. A hybrid fireworks optimization method with differential evolution operators[J]. Neurocomputing, 2012(148):75-80.
[32] YU C, KELLEY L, ZHENG S, et al. Fireworks algorithm with differential mutation for solving the CEC 2014 competition problems[C]//2014 IEEE Congress on Evolutionary Computation.[S.l.]:[s.n.], 2014:3238-3245.
[33] GAO H, DIAO M. Cultural firework algorithm and its application for digital filters design[J]. International Journal of Modelling, Identification and Control, 2011, 14(4):324-331.
[34] FANG W, SUN J, XU W, et al. FIR digital filters design based on quantum-behaved particle swarm optimization[C]//International Conference on Innovative Computing, Information and Control. 2006:615-619.
[35] FANG W, SUN J, XU W. FIR filter design based on adaptive quantum-behaved particle swarm optimization algorithm[J]. Systems Engineering and Electronics, 2008, 30(7):1378-81.
[36] IUGU T, TAKAGI H. Accelerating a GA convergence by fitting a single-peak function[C]//1999 IEEE International Conference on Fuzzy System. Seoul, South Korea, 1999:1415-1420.
[37] ZHANG B, ZHANG M X, ZHENG Y J. A hybrid biogeography-based optimization and fireworks algorithm[C]//2014 IEEE Congress on Evolutionary Computation.[S.l.]:[s.n.], 2014:3200-3206.
[38] SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[R]. 2005, 2005005.
[39] LIANG J J, QU B Y, SUGANTHAN P N, et al. Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter optimization[R]. Computational Intelligence Laboratory, 2013, 201-212.
[40] LIANG J J, QU B Y, SUGANTHAN P N. Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization[J]. Nanyang Technological University, 2013:1-50.
[41] WILCOXON F. Individual comparisons by ranking methods[J]. Biometrics Bulletin, 1945:80-83.
[42] TAN Y, XIAO Z M. Clonal particle swarm optimization and its applications[C]//IEEE Congress on Evolutionary Computation.[S.l.]:[s.n.], 2007:2303-2309.
[43] BRATTON D, KENNEDY J. Defining a standard for particle swarm optimization[C]//IEEE Swarm Intelligence Symposium. Honolulu, HI, 2007:120-127.
[44] ZHENG Y J, SONG Q, CHEN S Y. Multiobjective fireworks optimization for variable-rate fertilization in oil crop production[J]. Applied Soft Computing, 2013, 13(11):4253-4263.
[45] HAJECK J, SZOLLOS A, ?ISTEK J. A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization[J]. Advances in Engineering Software, 2010, 41(7):1031-1057.
[46] GOLDBERG D E.Genetic algorithms in search, optimization, and machine learning[M]. Reading Menlo Park:Addison-Wesley, 1989:412.
[47] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341-359.
[48] 杜振鑫. 烟花算法求解非线性方程组[J]. 现代计算机, 2013(3):18-21.DU Zhenxin. Fireworks algorithm for solving nonlinear equations[J]. Modern computer. 2013(3):18-21.
[49] 张家琴. 求解 0/1 背包问题的烟花算法研究[J]. 武汉工程职业技术学院学报, 2011, 23(3):64-66.ZHANG Jiaqin. Fireworks algorithm for solving 0/1 knapsack problems[J]. Journal of Wuhan Engineering Institute, 2011, 23(3):64-66.
[50] PHOLDEE N, BUREERAT S. Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints[J]. Advances in Engineering Software, 2014, 75:1-13.
[51] JANECEK A, TAN Y. Swarm intelligence for non-negative matrix factorization[J]. International Journal of Swarm Intelligence Research , 2011, 2(4):12-34.
[52] ZHENG S, TAN Y. A unified distance measure scheme for orientation coding in identification[C]//2013 International Conference on Information Science and Technology. Yangzhou, China, 2013:979-985.
[53] HE W, MI G, TAN Y. Parameter optimization of local-concentration model for spam detection by using fireworks algorithm[C]//Advances in Swarm Intelligence. Berlin:Springer, 2013:439-450.
[54] MOHAMED I A, KOWSALYA M. A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm[J]. International Journal of Electrical Power & Energy Systems, 2014, 62:312-322.
[55] RAJARAM R, PALANISAMY K, RAMASAMY S, et al. Selective harmonic elimination in PWM inverter using fire fly and fire works algorithm[J]. International Journal of Innovative Research in Advanced Engineering, 2014, (1):8:55-62.
[56] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791.
[57] BASTOS C J, DE LIMA N F, LINS A J, et al. Fish school search[M]//Nature-inspired Algorithms for Optimization. Berlin:Springer, 2009:261-277.
[58] JANECEK A, TAN Y. Using population based algorithms for initializing nonnegative matrix factorization[M]. Berlin:Springer, 2011:307-316.
[59] JANECEK A, TAN Y. Iterative improvement of the multiplicative update nmf algorithm using nature-inspired optimization[C]//2011 Seventh International Conference on Natural Computation.Shanghai, China, 2011:1668-1672.
[60] KONG A W K, ZHANG D. Competitive coding scheme for palmprint verification[C]//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK, 2004:520-523.
[61] JIA W, HUANG D S, ZHANG D. Palmprint verification based on robust line orientation code[J]. Pattern Recognition, 2008, 41(5):1504-1513.
[62] WU X, WANG K, ZHANG D. Palmprint authentication based on orientation code matching[C]//Audio-and Video-Based Biometric Person Authentication. Berlin:Springer, 2005:555-562.
[63] GUO Z, ZUO W, ZHANG L, et al. A unified distance measurement for orientation coding in palmprint verification[J]. Neurocomputing, 2010, 73(4):944-950.
[64] CHEN S, LUK B L. Digital IIR filter design using particle swarm optimisation[J]. International Journal of Modelling, Identification and Control, 2010, 9(4):327-335.
[65] ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms:empirical results[J]. Evolutionary Computation, 2000, 8(2):173-195.
[66] ABBASS H A, SARKER R, NEWTON C. PDE:a Pareto-frontier differential evolution approach for multi-objective optimization problems[C]//Proceedings of the 2001 Congress on Evolutionary Computation. Seoul, South Korea, 2011:971-978.
[67] GONG W, CAI Z. A multiobjective differential evolution algorithm for constrained optimization[C]//IEEE Congress on Evolutionary Computation. Hong Kong, China, 2008:181-188.
[68] QIAN W, YANG J, YANG Y, et al. A new random group search algorithm for solving the multi-objective programming problems[J]. Journal Liaoning Normal University, 2007, 30(2):141.
[69] NARA K, SHIOSE A, KITAGAWA M, et al. Implementation of genetic algorithm for distribution systems loss minimum re-configuration[J]. IEEE Transactions on Power Systems, 1992, 7(3):1044-1051.
[70] ZHU J Z. Optimal reconfiguration of electrical distribution network using the refined genetic algorithm[J]. Electric Power Systems Research, 2002, 62(1):37-42.
[71] ZHANG D, FU Z, ZHANG L. An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems[J]. Electric Power Systems Research, 2007, 77(5):685-694.
[72] SRINIVASA R R, NARASIMHAM S V L, RAMALINGA R M, et al. Optimal network reconfiguration of large-scale distribution system using harmony search algorithm[J]. IEEE Transactions on Power Systems, 2011, 26(3):1080-1088.
相似文献/References:
[1]康 琦,汪 镭,刘小莉,等.基于群体智能框架理念的遗传算法总体模式描述[J].智能系统学报,2007,2(5):42.
 KANG Qi,WANG Lei,LIU Xiao-li,et al.General mode description genetic algorithms based on a framework of swarm intelligence[J].CAAI Transactions on Intelligent Systems,2007,2():42.
[2]杨东升,康 琦,刘 波,等.面向生产系统的残次品主次成因的群体智能分析[J].智能系统学报,2009,4(6):502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
 YANG Dong-sheng,KANG Qi,LIU Bo,et al.Swarm intelligence analysis of primary and secondary causes of defective products for manufacturing system[J].CAAI Transactions on Intelligent Systems,2009,4():502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
[3]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[4]陈杰,沈艳霞,陆欣.基于信息反馈和改进适应度评价的人工蜂群算法[J].智能系统学报,2016,11(2):172.[doi:10.11992/tis.201506024]
 CHEN Jie,SHEN Yanxia,LU Xin.Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J].CAAI Transactions on Intelligent Systems,2016,11():172.[doi:10.11992/tis.201506024]
[5]秦全德,程适,李丽,等.人工蜂群算法研究综述[J].智能系统学报,2014,9(2):127.[doi:10.3969/j.issn.1673-4785.201309064]
 QIN Quande,CHENG Shi,LI Li,et al.Artificial bee colony algorithm: a survey[J].CAAI Transactions on Intelligent Systems,2014,9():127.[doi:10.3969/j.issn.1673-4785.201309064]
[6]顾大强,郑文钢.多移动机器人协同搬运技术综述[J].智能系统学报,2019,14(1):20.[doi:10.11992/tis.201801038]
 GU Daqiang,ZHENG Wengang.Technologies for cooperative transportation by multiple mobile robots[J].CAAI Transactions on Intelligent Systems,2019,14():20.[doi:10.11992/tis.201801038]
[7]李景灿,丁世飞.基于人工鱼群算法的孪生支持向量机[J].智能系统学报,2019,14(6):1121.[doi:10.11992/tis.201905025]
 LI Jingcan,DING Shifei.Twin support vector machine based on artificial fish swarm algorithm[J].CAAI Transactions on Intelligent Systems,2019,14():1121.[doi:10.11992/tis.201905025]
[8]邱华鑫,段海滨,范彦铭,等.鸽群交互模式切换模型及其同步性分析[J].智能系统学报,2020,15(2):334.[doi:10.11992/tis.201904052]
 QIU Huaxin,DUAN Haibin,FAN Yanming,et al.Pigeon flock interaction pattern switching model and its synchronization analysis[J].CAAI Transactions on Intelligent Systems,2020,15():334.[doi:10.11992/tis.201904052]
[9]吴一全,周建伟.布谷鸟搜索算法研究及其应用进展[J].智能系统学报,2020,15(3):435.[doi:10.11992/tis.201811005]
 WU Yiquan,ZHOU Jianwei.Overview of the cuckoo search algorithm and its applications[J].CAAI Transactions on Intelligent Systems,2020,15():435.[doi:10.11992/tis.201811005]
[10]黎延海,雍龙泉,拓守恒.随机交叉-自学策略改进的教与学优化算法[J].智能系统学报,2021,16(2):313.[doi:10.11992/tis.201910045]
 LI Yanhai,YONG Longquan,TUO Shouheng.Teaching-learning-based optimization algorithm based on random crossover-self-learning strategy[J].CAAI Transactions on Intelligent Systems,2021,16():313.[doi:10.11992/tis.201910045]

备注/Memo

收稿日期:2014-09-05。
基金项目:国家自然科学基金资助项目(61375119、61170057、60875080).
作者简介:郑少秋, 男, 1990年生, 博士研究生, 主要研究方向为群体智能、计算智能、模式识别。
通讯作者:谭营, 男, 1964年生, 教授, 博士生导师, 博士, 主要研究方向为计算智能、群体智能、机器学习方法、人工免疫系统、群体智能、智能信息处理及信息安全应用。担任IJCIPR主编, IEEETransonCybernetics副主编, IJSIR副主编等, IEEESeniorMember, IEEECIS-ETTC委员, ICSI系列会议大会主席等。主持国家"863"计划、国家自然科学基金、国际合作交流等科研项目30余项。获得2009年度国家自然科学二等奖。获国家发明专利授权3项, 发表学术论文260余篇, 出版专著5部。E-mail:ytan@pku.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com