[1]张钢,谢晓珊,黄英,等.面向大数据流的半监督在线多核学习算法[J].智能系统学报,2014,9(3):355-363.[doi:10.3969/j.issn.1673-4785.201403067]
 ZHANG Gang,XIE Xiaoshan,HUANG Ying,et al.An online multi-kernel learning algorithm for big data[J].CAAI Transactions on Intelligent Systems,2014,9(3):355-363.[doi:10.3969/j.issn.1673-4785.201403067]
点击复制

面向大数据流的半监督在线多核学习算法

参考文献/References:
[1] GOPALKRISHNAN V, STEIER D, LEWIS H, et al. Big data, big business:bridging the gap[C]//Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining:Algorithms, Systems, Programming Models and Applications. Beijing, China, 2012:7-11.
[2] YANG H, FONG S. Incrementally optimized decision tree for noisy big data[C]//Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining:Algorithms, Systems, Programming Models and Applications. Beijing, China, 2012:36-44.
[3] JORDAN M I. Divide-and-conquer and statistical inference for big data[C]//Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. Beijing, China, 2012:4-4.
[4] ACAR U A, CHEN Y. Streaming big data with self-adjusting computation[C]//Proceedings of the 2013 Proceedings of the 2013 Workshop on Data driven Functional Programming. Rome, Italy, 2013:15-18.
[5] ARI I, CELEBI O F, OLMEZOGULLARI E. Data stream analytics and mining in the cloud[C]//Proceedings of the 2012 IEEE 4th International Conference on Cloud Computing Technology and Science. Washington, DC, USA, 2012:857-862.
[6] AGMON S. The relaxation method for linear inequalities[J]. Canadian Journal of Mathematics, 1954, 6(3):393-404.
[7] GONEN M, ALPAYD E. Multiple kernel learning algorithms[J]. Journal of Machine Learning Research, 2011(12):2211-2268.
[8] ORABONA F, JIE L, CAPUTO B. Multi kernel learning with online-batch optimization[J]. Journal of Machine Learning Research, 2012(13):227-253.
[9] JIN R, HOI S C H, YANG T, et al. Online multiple kernel learning:algorithms and mistake bounds[J]. Algorithmic Learning Theory, 2010(6331):390-404.
[10] QIN C, RUSU F. Scalable I/O-bound parallel incremental gradient descent for big data analytics in GLADE[C]//Proceedings of the Second Workshop on Data Analytics in the Cloud. New York, USA, 2013:16-20.
[11] SINDHWANI V, NIYOGI P, BELKIN M. Beyond the point cloud:from transductive to semi-supervised learning[C]//Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany, 2005:824-831.
[12] 李宏伟, 刘扬, 卢汉清, 等. 结合半监督核的高斯过程分[J]. 自动化学报, 2009, 35(7):888-895.LI Hongwei, LIU Yang, LU Hanqing, et al. Gaussian processes classification combined with semi-supervised kernels[J]. Acta Automatica Sinica, 2009, 35(7):888-895.
[13] 邹恒明. 计算机的心智:操作系统之哲学原理[M]. 北京:机械工业出版社, 2012:100-102.
[14] BIFET A, HOLMES G, KIRKBY R, et al. MOA:massive online analysis[J]. Journal of Machine Learning Research, 2010(11):1601-1604.
[15] KREMER H, KRANEN P, JANSEN T, et al. An effective evaluation measure for clustering on evolving data streams[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, California, USA, 2011:868-876.
[16] BIFET A, HOLMES G, PFAHRINGER B, et al. Mining frequent closed graphs on evolving data streams[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, USA, 2011:591-599.
[17] FRANCESCO O, LUO Jie, BARBARA C. Multi kernel learning with online-batch optimization[J]. Journal of Machine Learning Research, 2012(13):227-253.
[18] STEVEN C H, RONG Jin, ZHAO Peilin, et al. Online multiple kernel classification[J]. Machine Learning, 2013, 90(2):289-316.
[19] UCI数据集:http://archive.ics.uci.edu/ml/.[2014-03-18].
[20] YANG Haiqin, MICHAEL R L, IRWIN K. Efficient online learning for multitask feature selection[J]. ACM Transactions on Knowledge Discovery from Data, 2013, 7(2):6-27.
[21] CHEN Jianhui, LIU Ji, YE Jieping. Learning incoherent sparse and low-rank patterns from multiple tasks[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 5(4):22-31.
[22] HONG Chaoqun, ZHU Jianke. Hypergraph-based multi-example ranking with sparse representation for transductive learning image retrieval[J]. Neurocomputing, 2013(101):94-103.
[23] YU Jun, BIAN Wei, SONG Mingli, et al. Graph based transductive learning for cartoon correspondence construction[J]. Neurocomputing, 2012(79):105-114.

备注/Memo

收稿日期:2014-03-25。
基金项目:国家自然科学基金资助项目(81373883)
作者简介:谢晓珊,女,1990年生,硕士研究生,发表学术论文3篇,主要研究方向为机器学习、数据挖掘、模式识别和生物医学图像处理。
通讯作者:张钢,男,1979年生,讲师,博士研究生,CCF会员。主要研究方向为机器学习、数据挖掘和生物信息学,参与国家自然科学基金项目1项 ,广东省自然科学基金团队项目1项,获得软件著作权2项,专利4项。发表学术论文40余篇,其中被SCI检索3篇,EI检索20余篇,E-mail:ipx@gdut.edu.cn。

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com