[1]赵森烽,赵克勤.几何概型的联系概率(复概率)与概率的补数定理[J].智能系统学报,2013,8(1):11-15.[doi:10.3969/j.issn.1673-4785.201208025]
ZHAO Senfeng,ZHAO Keqin.Contact probability (complex probability) of the geometry probability and the complement number theorem of probability[J].CAAI Transactions on Intelligent Systems,2013,8(1):11-15.[doi:10.3969/j.issn.1673-4785.201208025]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
8
期数:
2013年第1期
页码:
11-15
栏目:
学术论文—人工智能基础
出版日期:
2013-03-25
- Title:
-
Contact probability (complex probability) of the geometry probability and the complement number theorem of probability
- 文章编号:
-
1673-4785(2013)01-0011-05
- 作者:
-
赵森烽1,赵克勤2,3
-
1.浙江工业大学之江学院 理学系,浙江 杭州 310024;
2.诸暨市联系数学研究所,浙江 诸暨 311811;
3.浙江大学 非传统安全与和平发展中心,浙江 杭州 310058
- Author(s):
-
ZHAO Senfeng1, ZHAO Keqin2,3
-
1.Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou 310024, China;
2.Zhuji Institute of Connection Mathematics, Zhuji 311811, China;
3.Center for Nontraditional Security and Peaceful Development Studies, Zhejiang University, Hangzhou 310058, China
-
- 关键词:
-
随机试验; 几何概型; 联系概率(复概率); 概率; 表现定理; 补数定理
- Keywords:
-
random test; geometry probability; contact probability (complex probability); probability; representation theorem; inverse theorem
- 分类号:
-
TP18
- DOI:
-
10.3969/j.issn.1673-4785.201208025
- 文献标志码:
-
A
- 摘要:
-
为研究等可能随机试验结果为无穷多时的联系概率计算和应用,借助简单的“均匀投针”随机试验,导出几何概型的联系概率(复概率).该联系概率中的主概率和伴随概率依次对应于主事件的大数概率(主概率)和主事件的即或概率(伴随事件的大数概率).在此基础上给出了随机事件的表现定理和概率的补数定理,利用后者可以在已知一个随机事件概率的基础上方便地得到该事件的联系概率.通过实例说明了几何概型的联系概率与古典概型的联系概率具有同样的形式和性质.
- Abstract:
-
In order to research the calculation and application of contact probability when the result of equally likely random trial is infinite, the researcher utilized the simple “uniform needle” random test to derive contact probability (complex probability) of geometry probability. The main probability and the concomitant probability of the contact probability respectively correspond to the great number probability (main probability) of the main event and the even if probability (great number probability of concomitant event) of the main event. And on this basis, the representation theorem of the random event and complement number theorem of probability were provided in the study. The complement number theorem was used to conveniently find the contact probability of the event based on the premise of knowing the probability of a random event. The results illustrated that the contact probability of geometry probability had the same form and property with the contact probability of typical probability.
更新日期/Last Update:
2013-04-12