[1]梅雪,胡石,许松松,等.基于多尺度特征的双层隐马尔可夫模型及其在行为识别中的应用[J].智能系统学报,2012,7(6):512-517.
MEI Xue,HU Shi,XU Songsong,et al.Multi scale feature based double layer HMM and its application in behavior recognition[J].CAAI Transactions on Intelligent Systems,2012,7(6):512-517.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
7
期数:
2012年第6期
页码:
512-517
栏目:
学术论文—机器感知与模式识别
出版日期:
2012-12-25
- Title:
-
Multi scale feature based double layer HMM and its application in behavior recognition
- 文章编号:
-
1673-4785(2012)06-0512-06
- 作者:
-
梅雪,胡石,许松松,张继法
-
南京工业大学 自动化与电气工程学院,江苏 南京 211816
- Author(s):
-
MEI Xue, HU Shi, XU Songsong, ZHANG Jifa
-
College of Automation and Electrical Engineering, Nanjing University of Technology, Nanjing 211816, China
-
- 关键词:
-
双层隐马尔可夫模型; 行为识别; 多尺度特征; 智能视频监控
- Keywords:
-
doublelayer HMM (DLHMM); behavior recognition; multiscale feature; intelligent video surveillance
- 分类号:
-
TP391.4
- 文献标志码:
-
A
- 摘要:
-
借鉴人类视觉感知所具有的多尺度、多分辨性的特性,针对智能视频监控系统的人体运动行为识别,提出了一种基于多尺度特征的双层隐马尔可夫模型.根据人体行为关键姿态数确定HMM的状态数目,发掘人体运动行为隐藏的多尺度结构间的关系,将运动轨迹和人体姿态边缘小波矩2个不同尺度特征应用于2层HMM,提供更为丰富的行为尺度间的相关信息.分别用Weizmann人体行为数据库和自行拍摄的室内视频,对人体运动行为识别进行仿真实验,结果表明,五状态HMM模型更符合人体运动行为特点,基于多尺度特征的五状态双层隐马尔可夫模型具有较高的识别率.
- Abstract:
-
Learning from multiscale and multidistinguish attributes of human beings’ visual perception and aiming at human movement behavior recognition in intelligent video surveillance system, a doublelayer hidden markov model (DLHMM) is developed based on multiscale behavior features. Considering the human behavior characteristics, the number of HMM states is according to the number of key gestures selected. Discovering the relationship between the multiscale structures hidden in the human movement behavior, two different scale featureshuman motion trajectory and wavelet moment of human gesture’s edge, are applied respectively in two layers of DLHMM, so as to provide more scale information about behavior. Experiments, using Israel Weizmann human behavior database and human actions indoor recorded by ourselves, show the fivestate HMM more accords with the human motion behavior characteristics, and the fivestate DLHMM based on multiscale feature has a higher recognition rate compared with traditional methods using one layer HMM.
备注/Memo
收稿日期: 2012-03-15.
网络出版日期:2012-11-16.
基金项目:江苏省高校自然科学基金资助项目(09KJB510002); 江苏省博士后科研资助计划资助项目(1001027B);南京工业大学青年学科基金资助项目(39710006).
通信作者:梅雪.
E-mail: mx@njut.edu.cn.
作者简介:
梅雪,女,1975年生,副教授,硕士生导师,主要研究方向为图像处理、模式识别及计算机视觉.
胡石,男,1988年生,硕士研究生,主要研究领域为模式识别、图像处理.
张继法,男,1987年生,硕士研究生,主要研究领域为模式识别、图像处理.
更新日期/Last Update:
2013-03-19