[1]孙尧,马涛,高延滨,等.自适应扩维UKF算法在SINS/GPS组合导航系统中的应用[J].智能系统学报,2012,7(4):345-351.
SUN Yao,MA Tao,GAO Yanbin,et al.An adaptive augmented unscented Kalman filter with applications in a SINS/GPS integrated navigation system[J].CAAI Transactions on Intelligent Systems,2012,7(4):345-351.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
7
期数:
2012年第4期
页码:
345-351
栏目:
学术论文—智能系统
出版日期:
2012-08-25
- Title:
-
An adaptive augmented unscented Kalman filter with applications in a SINS/GPS integrated navigation system
- 文章编号:
-
1673-4785(2012)04-0345-07
- 作者:
-
孙尧1,马涛1,高延滨1,王璐2
-
1.哈尔滨工程大学 自动化学院,黑龙江 哈尔滨 150001;
2.上海交通大学 航空航天学院,上海 200240
- Author(s):
-
SUN Yao1, MA Tao1, GAO Yanbin1, WANG Lu2
-
1. College of Automation, Harbin Engineering University,Harbin 150001, China;
2. School of Aeronautics and Astronautics, Shanghai JiaoTong University, Shanghai 200240, China
-
- 关键词:
-
扩维UKF; 自适应渐消矩阵; 组合导航; 非线性滤波
- Keywords:
-
augmented unscented Kalman filter; adaptive fading matrix; integrated navigation; nonlinear filter
- 分类号:
-
TP18;U666.11
- 文献标志码:
-
A
- 摘要:
-
针对自适应渐消因子卡尔曼滤波无法应用于非线性系统的问题以及自适应渐消因子的局限性,提出了带自适应渐消矩阵的扩维UKF(adaptive fading matrix augmented UKF, AFMAUKF)算法.该算法针对含有非加性白噪声的非线性系统,引入了一种新的自适应渐消矩阵计算方法,并用Unscented变换逼近系统的后验均值和协方差,有效解决了此类系统的滤波问题.针对SINS/GPS组合导航系统的非线性状态估计问题,分别设计了滤波器容错试验和系统噪声突变试验,试验结果证明了该算法的有效性.
- Abstract:
-
Because an adaptive fading Kalman filter cannot be applied to nonlinear systems, an augmented unscented Kalman filter (AUKF) based on an adaptive fading matrix (AFM) was proposed in this paper. The AFMAUKF algorithm was implemented by first calculating the adaptive fading matrix, and then using the unscented transformation to estimate the posterior mean and covariance of the state of a nonlinear system, so as to effectively solve the filtering problem. In order to solve the problem of nonlinear state estimation in a lowcost integrated navigation system, a filter faulttolerant experiment and a system noise mutation experiment were designed and implemented, respectively. The experimental results prove that the algorithm enhances the robustness of the filter when the system model is uncertain, improves the accuracy of the filter, and has a strong faulttolerant ability.
备注/Memo
收稿日期: 2012-03-01.
网络出版日期:2012-07-12.
基金项目:国家自然科学基金资助项目(50909025/E091002);国际科技合作基金资助项目(2010DFR80140).
通信作者:马涛.
E-mail:mt_0606@yahoo.com.cn.
作者简介:
孙尧,男,1963年生,教授,博士生导师, 主要研究方向为信息融合技术、导航自动化、突变控制、精密仪器及机械、智能仪器与系统.发表学术论文多篇.
马涛,男,1984年生,博士研究生,主要研究方向为惯性导航系统、组合导航系统及技术.
高延滨,男,1963年生,教授,博士生导师,主要研究方向为微弱信号处理及噪声抑制技术、导航信息转换技术和平台及捷联式惯导系统技术,发表学术论文20余篇,出版专著1部,获得省级科技进步三等奖1项.
更新日期/Last Update:
2012-09-26