[1]谷文祥,姜蕴晖,周俊萍,等.最坏情况下Min-2SAT问题的上界[J].智能系统学报,2012,7(3):241-245.
GU Wenxiang,JIANG Yunhui,ZHOU Junping,et al.New worstcase upper bounds for Min-2SAT problems[J].CAAI Transactions on Intelligent Systems,2012,7(3):241-245.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
7
期数:
2012年第3期
页码:
241-245
栏目:
学术论文—人工智能基础
出版日期:
2012-06-25
- Title:
-
New worstcase upper bounds for Min-2SAT problems
- 文章编号:
-
1673-4785(2012)03-0241-05
- 作者:
-
谷文祥1,2,姜蕴晖1,周俊萍1,殷明浩1
-
1.东北师范大学 计算机科学与信息技术学院,吉林 长春 130117;
2.长春建筑学院 基础教学部,吉林 长春 130607
- Author(s):
-
GU Wenxiang1,2, JIANG Yunhui1, ZHOU Junping1, YIN Minghao1
-
1.School of Computer Science and Information Technology, Northeast Normal University, Changchun 130117, China;
2.Department of Basic Subjects Teaching, Changchun Architecture & Civil Engineering College, Changchun 130607, China
-
- 关键词:
-
MaxSAT; MinSAT; Min2SAT; MaxSAT问题的上界; Min2SAT问题的上界; 子句数目; 分支树
- Keywords:
-
maximum satisfiability; minimum satisfiability; minimum twosatisfiability; upper bounds for maximum satisfiability; upper bounds for minimum twosatisfiability; number of clauses; branching tree
- 分类号:
-
TP301
- 文献标志码:
-
A
- 摘要:
-
最坏情况下MaxSAT问题上界的研究已成为一个热门的研究领域.与MaxSAT问题相对的是MinSAT问题,在求解某些组合优化问题时,将其转化为MinSAT问题比转化为MaxSAT问题有着更快的速度,因此对MinSAT问题进行研究.针对Min2SAT问题提出算法MinSATAlg,该算法首先利用化简算法Simplify对公式进行化简,然后通过分支树的方法对不同情况的子句进行分支.从子句数目的角度分析算法的时间复杂度并证明Min2SAT问题可在O(1.134 3m)时间内求解,对于每个变量至多出现在3个2子句中的情况,得到最坏情况下的上界为O(1.122 5n),其中n为变量的数目.
- Abstract:
-
The rigorous theoretical analyses of algorithms for solving the upper bounds of maximum satisfiability (MaxSAT) problems have been proposed in research literature. The opposite problem of MaxSAT is the minimum satisfiability (MinSAT) problem. Solving some combinatorial optimization problems by reducing them to MinSAT form may be substantially faster than reducing them to MaxSAT form, so the MinSAT problem was researched in this paper. An algorithm (MinSATAlg) was presented for the minimum twosatisfiability (Min2SAT) problem. In this paper, first, the simplification algorithm Simplify was used for simplification of formulas. Secondly, the branching tree method was used for branching on different kinds of clauses. It was proven that this algorithm can solve the Min2SAT problem in O (1.134 3m), regarding the number of clauses as parameters. The upper bound in the worst case was derived as O(1.122 5n), where n is the number of variables in an input formula for a particular case of Min2SAT in which each variable appears in three 2clauses at most.
备注/Memo
收稿日期: 2011-09-06.网络出版日期:2012-05-10.
基金项目:国家自然科学基金资助项目(61070084);国家自然科学青年基金资助项目(60803102);中央高校基本科研业务费专项资金资助项目(11QNJJ006).
通信作者:姜蕴晖.E-mail: jiangyh215@nenu.edu.cn.
作者简介:
谷文祥,男,1947年生,教授,博士生导师,主要研究方向为智能规划与规划识别.主持或参与国家自然科学基金项目5项、教育部重点项目2项、省科委项目1项.发表学术论文130余篇,出版专著《智能规划与规划识别》,2011年获得吉林省专著类一等奖.
姜蕴晖,女,1987年生,硕士研究生,主要研究方向为智能规划与自动推理.
周俊萍,女,1981年生,讲师,主要研究方向为智能规划与自动推理,发表学术论文5篇.
更新日期/Last Update:
2012-09-05