[1]杨振宇,唐珂.差分进化算法参数控制与适应策略综述[J].智能系统学报,2011,6(5):415-423.
YANG Zhenyu,TANG Ke.An overview of parameter control and adaptation strategiesin differential evolution algorithm[J].CAAI Transactions on Intelligent Systems,2011,6(5):415-423.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
6
期数:
2011年第5期
页码:
415-423
栏目:
综述
出版日期:
2011-10-30
- Title:
-
An overview of parameter control and adaptation strategiesin differential evolution algorithm
- 文章编号:
-
1673-4785(2011)05-0415-09
- 作者:
-
杨振宇1,唐珂2
-
1.华东师范大学 计算机科学技术系,上海 200241;
2.中国科学技术大学 计算机科学与技术学院,安徽 合肥 230027
- Author(s):
-
YANG Zhenyu1, TANG Ke2
-
1.Department of Computer Science and Technology, East China Normal University, Shanghai 200241, China;
2.School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
-
- 关键词:
-
进化计算; 差分进化; 参数控制; 适应策略; 自适应
- Keywords:
-
evolutionary computation; differential evolution; parameter control; adaptation strategies; selfadaptation
- 分类号:
-
TP18;O224
- 文献标志码:
-
A
- 摘要:
-
差分进化算法逐渐成为进化计算领域最流行的随机搜索算法之一,已被成功用于求解各类应用问题.差分进化算法参数设置与其性能密切相关,因此算法参数控制与适应策略设计是目前该领域的研究热点之一,目前已涌现出大量参数控制方案,但尚缺乏系统性的综述与分析.首先简要介绍差分进化算法的基本原理与操作,然后将目前参数控制与适应策略分成基于经验的参数控制、参数随机化适应策略、基于统计学习的参数随机化适应策略和参数自适应策略4类进行系统性综述,重点介绍其中的参数适应与自适应策略.此外,为分析各种参数控制与适应策略的功效,以实值函数优化为问题背景设计了相关实验,进一步分析各种策略的效率与实用性,实验结果表明,参数自适应控制策略是目前该领域最有效的方法之一.
- Abstract:
-
Differential evolution algorithms have gradually become one of the most popular types of stochastic search algorithms in the area of evolutionary computation. They have been successfully applied to solve various problems in realworld applications. Since their performance often depends heavily on the parameter settings, the design of parameter control and adaptation strategies is one of the current hot topics of research in differential evolution. Although numerous parameter control schemes have been proposed, systematic overviews and analysis are still lacking. In this paper, first the basic principles and operations of the differential evolution algorithm were briefly introduced, and then a detailed overview was provided on different parameter control and adaptation strategies by dividing them into the following four classes: empirical parameter settings, randomized parameter adaptation strategies, randomized parameter adaptation strategies with statistical learning, and parameter selfadaptation strategies. The overview emphasized the latter two classes. To study the efficacy of these parameter control and adaptation strategies, experiments with the background of realvalued function optimization were conducted to compare their efficiency and practicability further. The results showed that the parameter selfadaptation is one of the most effective strategies so far.
备注/Memo
收稿日期: 2010-11-02.
基金项目:海外及港澳学者合作研究基金资助项目(61028009).
?通信作者:唐珂.E-mail:ketang@ustc.edu.cn.
作者简介:
杨振宇,男,1982年生,讲师,博士,主要研究方向为进化计算与应用,发表学术论文多篇,其中被SCI、EI检索10余篇.
唐珂,男,1981年生,教授,博士,IEEE Computational Intelligence Magazine副编辑,IEEE 计算智能协会Emergent Technologies Technical Committee委员.主要研究方向为计算智能、机器学习、模式识别等,发表学术论文50余篇.
更新日期/Last Update:
2011-11-16