[1]古丽娜孜,孙铁利,伊力亚尔,等.一种基于主动学习支持向量机哈萨克文文本分类方法[J].智能系统学报,2011,6(3):261-267.
 GU Linazi,SUN Tieli,YI Liyaer,et al.An approach to the text categorization of the Kazakh language based on an active learning support vector machine[J].CAAI Transactions on Intelligent Systems,2011,6(3):261-267.
点击复制

一种基于主动学习支持向量机哈萨克文文本分类方法

参考文献/References:
[1]LV lin, LIU Yushu. Research of English text classification methods based on semantic meaning[C]//2005 International Conference on Information and Communication Technologies. Karachi, Pakistan, 2005: 689700.
[2]陈立伟,井志强,葛秘蕾.基于特征项扩展的中文文本分类方法[J].应用科技, 2010, 37(3): 15.
?CHEN Liwei, JING Zhiqiang, GE Milei.A Chinese text classification method based on feature expansion[J].Applied Science and Technology, 2010, 37(3): 15.
[3]张彰,樊孝忠.一种改进的基于SVM的文本分类算法[J].计算机工程与设计, 2006, 27(21): 40784080.
?ZHANG Zhang, FAN Xiaozhong. Improved VSM based on Chinese text categorization[J]. Computer Engineering and Design, 2006, 27(21): 40784080.
[4]JOACHIMS T. Text categorization with support vector machines: learning with many relevant features[C]//Proceedings of the 10th European Conference on Machine Learning(ECML98). Chemnitz, Germany: Springer Verlag, 1998: 137142.
[5]VAPNIK V N. Statistical learning theory[M]. New York, USS: John Wiley & Sons Inc, 1998: 375570.
[6]SEBASTIANI F. Machine learning in automated text categorization[J]. ACM Computing Surveys, 2002, 34(1): 147.
[7]TONG S, KOLLER D. Support vector machine active learning with applications to text classification[J]. Journal of Machine Learning Research, 2001, 2(1): 4566.
[8]BURGES J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 12l167.
[9]朱红斌,蔡郁.基于主动学习支持向量机的文本分类[J].计算机工程应用, 2009, 45(2): 134136.
ZHU Hongbin, CAI Yu. Text categorization based on active learning support vector machines[J]. Computer Engineering and Applications, 2009, 45(2): 134136.
[10]刘宏,屠轶清,黄上腾.一种新的支持向量机主动学习策略及其在文本分类中的应用[J].计算机科学, 2003, 30(6): 110112.
LIU Hong, TU Zhiqing, HUANG Shangteng. A new support vector machines active learning approach and its application in text classification[J]. Computer Science, 2003, 30(6): 110112.
[11]刘志刚,李德仁,秦前清,等.支持向量机在多类分类问题中的推广[J].计算机工程与应用, 2004, 40(7): 1013, 65.
LIU Zhigang, LI Deren, QIN Qianqing, et al. An analytical overview of methods for multicategory with support vector machines[J]. Computer Engineering and Applications, 2004, 40(7): 1013, 65.
[12]张健沛,徐华.支持向量机(SVM)主动学习方法研究与应用[J].计算机应用, 2004(1): 13.
ZHANG Jianpei, XU Hua. Study and application of active learning with SVM[J]. Computer Applications, 2004(1): 13.
[13]PLATT J C, CRISTIANINI N, SHAWETAYLOR J. Large margin DAGs for multiclass classification[C]//Proceedings of Neural Information Processing Systems. Cambridge, USA: MIT Press, 2000: 547553.
[14]贺慧,王俊义.主动支持向量机的研究及其在蒙文文本分类中的应用[J].内蒙古大学学报:自然科学版, 2006, 37(5): 560563. HE Hui, WANG Junyi. Study of active learning support vector machine and its application on Mongolian text classification[J]. Acta Sientiarum Naturalium Universitatis NeiMongol, 2006, 37(5): 560563.
[15]SCHOHN G, COHN D. Less is more: active learning with support vector machines[C]//Proceedings of the Seventeenth International Conference on Machine Learning (ICML2000). Stanford, USA, 2000: 839846.
相似文献/References:
[1]王书舟,伞 冶.支持向量机的训练算法综述[J].智能系统学报,2008,3(6):467.
 WANG Shu-zhou,SAN Ye.A survey on training algorithms for support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3():467.
[2]陈小娥,陈昭炯.多类SVM在图像艺术属性分类中的应用研究[J].智能系统学报,2009,4(2):157.
 CHEN Xiao-e,CHEN Zhao-jiong.An application of multiclass SVM in the classification of artistic attributes of images[J].CAAI Transactions on Intelligent Systems,2009,4():157.
[3]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(1):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2():69.
[4]张 亮,朱振峰,赵 耀,等.基于镜头的鲁棒视频广告检测[J].智能系统学报,2007,2(2):83.
 ZHANG Liang,ZHU Zhen-feng,ZHAO Yao,et al.Video commercial detection based on the robustness of sho t[J].CAAI Transactions on Intelligent Systems,2007,2():83.
[5]赵春晖,陈万海,万? 建.一种改进的多类支持向量机超光谱图像分类方法[J].智能系统学报,2008,3(1):77.
 ZHAO Chun-hui,CHEN Wan-hai,WAN jian.An improved hyperspectral image classification method for? a multiclass support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3():77.
[6]杨志豪,洪 莉,林鸿飞,等.基于支持向量机的生物医学文献蛋白质关系抽取[J].智能系统学报,2008,3(4):361.
 YANG Zhi-hao,HONG L i,L IN Hong-fei,et al.Extraction of information on prote in2prote in interaction from biomedical literatures using an SVM[J].CAAI Transactions on Intelligent Systems,2008,3():361.
[7]刘? 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(3):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4():199.
[8]刘 胜,李高云,江 娜.SVM性能的免疫鱼群多目标优化研究[J].智能系统学报,2010,5(2):144.
 LIU Sheng,LI Gao-yun,JIANG Na.Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance[J].CAAI Transactions on Intelligent Systems,2010,5():144.
[9]杨振兴,刘久富,孙 琳.不变量的程序潜在错误预测[J].智能系统学报,2010,5(4):327.
 YANG Zhen-xing,LIU Jiu-fu,SUN Lin.Using invariants to predict the potential for errors in programs[J].CAAI Transactions on Intelligent Systems,2010,5():327.
[10]何世钊,杨宣访,陈晓娟.支持向量机与BP网络在火灾图像探测上的比较[J].智能系统学报,2011,6(4):339.
 HE Shizhao,YANG Xuanfang,CHEN Xiaojuan.Comparisons between a support vector machine and BP neural network for video image fire detection[J].CAAI Transactions on Intelligent Systems,2011,6():339.

备注/Memo

收稿日期: 2010-10-08.
基金项目:教育部科技发展中心网络时代的科技论文快速共享研究项目(20090043110010);吉林省科技规划资助项目(20090503);吉林省教育厅“十一五”科研规划资助项目(2009587).
通信作者:孙铁利.E-mail:suntl@nenu.edu.cn.
作者简介:古丽娜孜,女,1972年出生,讲师,主要研究方向为数据挖掘、文本分类等,发表学术论文10余篇.
孙铁利,男,1956年出生,教授,博士生导师,伊犁师范学院兼职教授.主要研究方向为智能用户接口、智能信息挖掘.近年来承担国家级、省部级科研项目8项.发表学术论文100余篇,出版专著及教材10余部.
伊力亚尔,男,1978年出生,讲师,主要研究方向为计算机应用、自然语言信息处理,发表学术论文10余篇.

更新日期/Last Update: 2011-07-23
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com