[1]罗艳,蔡自兴.指示类交通标识的自动检测[J].智能系统学报,2011,6(3):213-218.
LUO Yan,CAI Zixing.Automatic detection of indicative traffic signs[J].CAAI Transactions on Intelligent Systems,2011,6(3):213-218.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
6
期数:
2011年第3期
页码:
213-218
栏目:
学术论文—机器感知与模式识别
出版日期:
2011-06-25
- Title:
-
Automatic detection of indicative traffic signs
- 文章编号:
-
1673-4785(2011)03-0213-06
- 作者:
-
罗艳,蔡自兴
-
中南大学 信息科学与工程学院,湖南 长沙410083
- Author(s):
-
LUO Yan, CAI Zixing
-
School of Information Science and Engineering, Central South University, Changsha 410083, China
-
- 关键词:
-
指示类交通标识; HSV颜色查找; 圆形度; 拐角检测; 距离直方图
- Keywords:
-
indicative traffic signs; HSV color search; circularity; corner detection; distance histogram
- 分类号:
-
TP391.4
- 文献标志码:
-
A
- 摘要:
-
针对指示类交通标识的特点,进行标志牌检测算法的研究.首先利用快速HSV颜色查找的方法进行颜色分割,对颜色分割后的二值图进行必要的形态学预处理,接着利用圆形度和拐角检测与几何特征结合的方法进行形状识别.针对某些圆形标志边缘分割不完整的情形,提出一种根据距离直方图判断是否为圆形标志的方法.实验结果表明,算法对实际道路环境下的指示类交通标识的检测具有较好准确性和鲁棒性,满足实时性要求.
- Abstract:
-
This paper studied the detection algorithms of indicative traffic signs. First, the color segmentation was recorded along with a fast HSV color search method, and later the morphologic preprocessing was taken on the binary image after the color segmentation. Second, circularity and corner detection combined with geometric characteristics were used to judge if a region was an indicative sign. Last, in view of the incomplete edge of the round sign after the color segmentation, a new algorithm was raised based on a distance histogram for confirmation. Experimental results show that this algorithm is accurate and robust for detecting indicative traffic signs in real traffic environments, and also meets the realtime demand.
备注/Memo
收稿日期: 2010-12-22.
基金项目:国家自然科学基金资助项目(90820302).
通信作者:罗艳.E-mail:luoyan0702@sohu.com.
作者简介:
罗艳,女,1984年生,硕士研究生,主要研究方向为图像处理与机器视觉.
蔡自兴,男,1938年生,教授,博士生导师,国际导航与运动控制科学院院士,纽约科学院院士,首届全国高校国家级教学名师.主要研究方向为智能系统、人工智能、智能控制、机器人等.主持并完成国家级和省部级科教研究项目30余项,此外,还主持国家级精品课程、国家级教学团队和全国双语教学示范课程等项目,获得国际奖励2项、国家级奖励2项、省部级以上奖励12项.发表学术论文800余篇,出版专著、教材31部.
更新日期/Last Update:
2011-07-23