[1]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(2):132-140.
MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6(2):132-140.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
6
期数:
2011年第2期
页码:
132-140
栏目:
学术论文—人工智能基础
出版日期:
2011-04-25
- Title:
-
A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability
- 文章编号:
-
1673-4785(2011)02-0132-09
- 作者:
-
马胜蓝,叶东毅
-
福州大学 数学与计算机科学学院, 福建 福州 350108
- Author(s):
-
MA Shenglan, YE Dongyi
-
College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
-
- 关键词:
-
属性约简; 粗糙集; 禁忌搜索; 粒子群优化算法; 并行子群
- Keywords:
-
attribute reduction; rough set; tabu search; particle swarm optimization; parallel particle subswarm
- 分类号:
-
TP18
- 文献标志码:
-
A
- 摘要:
-
为了提高基于群体智能的粗糙集最小属性约简算法的求解质量和计算效率,提出一个结合长期记忆禁忌搜索方法的粒子群并行子群优化算法.并行的各子群不仅具有禁忌约束,而且包含多样性和增强性策略.由于并行的子群共同陷入局部最优的概率小于一个粒子群陷入局部最优的概率,该算法可提高获得全局最优的可能性,并减少受初始粒子群体的影响.多个UCI数据集的实验计算表明,提出的算法相对于其他的属性约简算法具有更高的概率搜索到最小粗糙集约简.因此所提出的算法用于求解最小属性约简问题是可行和较为有效的.
- Abstract:
-
In order to improve the solution quality and computing efficiency of rough set minimum attribute reduction algorithms based on swarm intelligence, a parallel particle subswarm optimization algorithm with longmemory Tabu search capability was proposed. In addition to the taboo restriction, some diversification and intensification schemes were employed. Since parallel subswarms have a lower probability of simultaneously getting trapped in a local optimum than a single particle swarm, the proposed algorithm enhances the probability of finding a global optimum and decreases the influence of initial particles. Experimental results on a number of UCI datasets show that the proposed algorithm has a higher probability of finding a minimum attribute reduction in rough sets compared with some existing swarm intelligence based attribute reduction algorithms. Therefore, the proposed algorithm is feasible and relatively effective for the minimum attribute reduction problem.
更新日期/Last Update:
2011-05-19