[1]张燕昆,洪初阳,WANG Charles.实时矩形交通限速标志识别系统[J].智能系统学报,2010,5(6):540-544.
ZHANG Yan-kun,HONG Chu-yang,WANG Charles.A real time rectangular speed limit sign recognition system[J].CAAI Transactions on Intelligent Systems,2010,5(6):540-544.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
5
期数:
2010年第6期
页码:
540-544
栏目:
学术论文—智能系统
出版日期:
2010-12-25
- Title:
-
A real time rectangular speed limit sign recognition system
- 文章编号:
-
1673-4785(2010)06-0540-05
- 作者:
-
张燕昆, 洪初阳, WANG Charles
-
哈曼国际中国研究中心 核心技术研发部,上海 200233
- Author(s):
-
ZHANG Yan-kun, HONG Chu-yang, WANG Charles
-
Harman International, Shanghai RD Center Corporate Technology Group, Shanghai 200233, China
-
- 关键词:
-
交通限速标志; 辅助驾驶系统; 局部二值模式; 主元分析; 二叉树; 支持向量机
- Keywords:
-
speed limit sign; driver assistant system; local binary pattern; PCA; binary tree; support vector machine
- 分类号:
-
TP273
- 文献标志码:
-
A
- 摘要:
-
交通限速标志识别系统是汽车辅助驾驶系统的一项重要组成部分,本文提出了一种实时矩形交通标志识别系统.首先采用多尺度多区域的局部二值模式(LBP)特征训练Adaboost分类器进行交通限速标志的检测,然后利用线性预测的算法进行标志跟踪.识别预处理阶段,首先采用投影分析的方法对交通标志进行旋转校正,然后采用基于积分图的自适应二值化方法将图像进行二值化,再利用连通区域标记方法得到包含限速标志数字的最小矩形区域.识别时首先采用主元分析(PCA)进行特征向量提取,然后用聚类的方法构建二叉树的线性支持向量机进行分类识别.在普通笔记本电脑系统配置下,通过大量的实际道路场景的视频数据测试,系统取得了98.3%的正确识别率,平均处理速度达16帧/s.
- Abstract:
-
Speed limit sign recognition is one of the important components for a driver assistance system. An efficient real time rectangular speed limit sign recognition system was proposed. The system framework design considered the computation load and hardware resources for a driver assistance system. First, multiscale overlapping local binary pattern (LBP) image features were used to train an AdaBoost cascade classifier for sign detection. Then a simple linear prediction method was used to do the tracking task. In the recognition stage, the projection method was used to correct the rotation angle and then the integral image based adaptive threshold algorithm was applied to segment the speed limit number, and then the principal component analysis (PCA) was used for feature vector extraction. Finally, a clustering based binary tree of a linear support vector machine was designed for the classification task. The system achieved a 98.3% recognition rate with an approximate frame rate of 16fps in video files for the laptop computer system during actual road tests.
备注/Memo
收稿日期:2009-12-17.
通信作者:张燕昆.E-mail:James.Zhang@harman.com.
作者简介:
张燕昆,男,博士.主要研究方向为计算机视觉、人脸检测与识别、三维计算机视觉;发表学术论文7篇.
洪初阳,男,硕士,主要研究方向为图像处理、图像分割和机器视觉等.
Wang Charles, 博士,主要研究方向为视频分析、模式识别等.发表论文多篇,同时拥有多项专利.
更新日期/Last Update:
2011-03-03