[1]高彦宇,尹怡欣.D-S证据理论在图像情感标识中的应用[J].智能系统学报,2010,5(6):534-539.
GAO Yan-yu,YIN Yi-xin.Application of the DempsterShafer theory to affective image annotation[J].CAAI Transactions on Intelligent Systems,2010,5(6):534-539.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
5
期数:
2010年第6期
页码:
534-539
栏目:
学术论文—人工智能基础
出版日期:
2010-12-25
- Title:
-
Application of the DempsterShafer theory to affective image annotation
- 文章编号:
-
1673-4785(2010)06-0534-06
- 作者:
-
高彦宇,尹怡欣
-
北京科技大学 信息工程学院,北京 100083
- Author(s):
-
GAO Yan-yu, YIN Yi-xin
-
School of Information Engineering, University of Science & Technology Beijing, Beijing 100083, China
-
- 关键词:
-
D-S证据理论; 图像情感标识; 情感因子; 分级语义
- Keywords:
-
DempsterShafer theory; affective image annotation; affective factor; hierarchical semantics
- 分类号:
-
TP391.4
- 文献标志码:
-
A
- 摘要:
-
图像情感标识就是为图像标注形容词性关键词,以反映用户对该图像的情感或印象.图像的视觉特征以及语义内容是决定用户对该图像情感理解的2项关键因素,而图像内容识别具有较高的不确定性,人类的情感理解也具有很强的主观性,因此采用DempsterShafer证据理论能较好实现图像视觉特征及语义内容到图像情感标识的不确定性推理.考虑到图像内容识别的不确定性,研究中按一定比例扩大了图像语义内容对各情感因子的不确定性区间,并构建了一个原型系统对自然风景图像进行自动标识.实验表明DempsterShafer证据理论在处理情感标识上是很有效的,而调整不确定性区间有助于进一步提高标识准确率.
- Abstract:
-
Affective image annotation involves labeling an image with adjectives, so that those labels reflect the user’s emotional understanding of the image. The lowlevel visual features and the image semantic content are two decisive factors in the user’s emotional understanding of an image, while image content recognition is highly uncertain and affective understanding is strongly subjective. In the following study, the DempsterShafer theory was applied to represent the visual image characteristics and to model the uncertainty reasoning from those decisive factors to affective understanding. In response to the semantic recognition error, the uncertainty range of image contents to each affective factor was enlarged and a prototype affective annotation system was built to automatically label natural scenic images. Experimental results show that the DempsterShafer theory is promising for ambiguous annotation, and enlarging the uncertainty range is helpful for improving annotation precision.
更新日期/Last Update:
2011-03-03