[1]姜 峰,李 博,姚鸿勋,等.流形学习与基于线性耦合映射的流形对齐[J].智能系统学报,2010,5(6):476-481.
 JIANG Feng,LI Bo,YAO Hong-xun,et al.Manifold learning and manifold alignmentbased on coupled linear projections[J].CAAI Transactions on Intelligent Systems,2010,5(6):476-481.
点击复制

流形学习与基于线性耦合映射的流形对齐

参考文献/References:
[1]TENENBAUM J, SILVA V, LANGFORD J. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 5500(290): 23192323. 
[2]ROWEIS S, SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 5500(290): 23232326.
[3]SAUL L, ROWEIS S. Think globally, fit locally: unsupervised learning of low dimensional manifolds[J]. The Journal of Machine Learning Research, 2003, 4: 119155.
[4]BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 13731396.
[5]YAN S, XU D, ZHANG B, ZHANG H, YANG Q. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 4051.
[6]BENGIO Y, PAIEMENT J, VINCENT P, et al. Outofsample extensions for LIE, Isomap, MDS, eigenmaps, and spectral clustering[C]//Advances in Neural Information Processing Systems.Cambrige: MIT Press, 2004: 177184.
[7]HAM J, LEE D, SAUL L. Semisupervised alignment of manifolds[C]//Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence. Edinburgh, UK, 2005: 120127.
[8]CONG Haifeng, PAN Chunhong, YANG Qing. A semisupervised framework for mapping data to the intrinsic manifold[C]//Tenth IEEE International Conference on Computer Vision 2005. [S.l.], 2005: 98105.
[9]XIONG Liang, WANG Fei, ZHANG Changshui. Semidefinite manifold alignment[J]. Lecture Notes in Computer Science, 2007, 4701: 773.
[10]RASMUSSEN C, WILLIAMS C. Gaussian processes for machine learning[M]. Cambrige: The MIT Press, 2006: 101107. 
[11]WANG C, MAHADEVAN S. Manifold alignment using procrustes analysis[C]//Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland, 2008: 11201127.
[12]NENE S, NAYAR S, MURASE H. Columbia object image library (coil20)[R]. CUCS00696, Department of Computer Science, Columbia University.
[13]GEORGHIADES A, BELHUMEUR P, KRIEGMAN D. From few to many: illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643660.

备注/Memo

收稿日期:2009-12-05.
基金项目:黑龙江省自然科学基金资助项目(F200812).
通信作者:姜 峰.E-mail:fjiang@hit.edu.cn.
作者简介:
姜 峰,男,1978年生,硕士生导师.主要研究方向为模式识别、机器学习、图像处理等.
李 博,男,1980年生,博士研究生,主要研究方向为模式识别、机器学习、图像处理等.
姚鸿勋,女,1965年生,教授,博士生导师,主要研究方向为多媒体数据分析与理解、信息检索、视频监控、模式识别. 完成国家自然科学基金重点项目1项(评优),国家自然科学基金1项(评优),国家“863”计划重点项目子项目1项,“863”计划项目3项,“863”青年基金1项,信息产业部2项,国际合作4项.获省部级科技成果奖4项,其中一等奖2项,二等奖1项,三等奖1项,另获省级教学成果奖2项.已获国家发明专利4项,审理中5项.出版教材5部.已发表国内外学术论文160余篇,被SCI 检索32篇,EI 检索91篇,ISTP 检录61篇.

更新日期/Last Update: 2011-03-03
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com