[1]张秀玲,李少清,田力勇.Elman神经网络的板形模式识别方法[J].智能系统学报,2010,5(5):449-453.[doi:10.3969/j.issn.1673-4785.2010.05.012]
ZHANG Xiu-ling,LI Shao-qing,TIAN Li-yong.Research of flatness pattern recognition based on the Elman neural network[J].CAAI Transactions on Intelligent Systems,2010,5(5):449-453.[doi:10.3969/j.issn.1673-4785.2010.05.012]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
5
期数:
2010年第5期
页码:
449-453
栏目:
学术论文—机器感知与模式识别
出版日期:
2010-10-25
- Title:
-
Research of flatness pattern recognition based on the Elman neural network
- 文章编号:
-
1673-4785(2010)05-0449-05
- 作者:
-
张秀玲1,2,李少清1,2,田力勇1,2
-
1.燕山大学 电气工程学院,河北 秦皇岛 066004; 2.燕山大学 工业计算机控制工程河北省重点实验室,河北 秦皇岛 066004
- Author(s):
-
ZHANG Xiu-ling1,2, LI Shao-qing1,2, TIAN Li-yong1,2
-
1.College of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; 2.Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, China
-
- 关键词:
-
板形模式识别; Elman神经网络; 动态网络
- Keywords:
-
flatness pattern recognition; Elman neural network; dynamic network
- 分类号:
-
TP183
- DOI:
-
10.3969/j.issn.1673-4785.2010.05.012
- 文献标志码:
-
A
- 摘要:
-
针对静态网络设计和识别时间模式的能力弱、泛化能力差、学习速度慢等缺点,建立了一个基于Elman神经网络的板形模式识别系统.该系统由于考虑到了神经网络的过学习或过拟合问题,且通过经验公式和对比实验来确定神经网络的隐层节点数,具有简单、有效的优点.系统通过对6种基本板形模式及其组合模式的学习,具有了一定的泛化能力.经仿真验证,实际输出的误差均小于0.1,识别效果良好,可以证明基于Elman动态网络的系统,其板形识别能力要强于BP网络构成的系统.
- Abstract:
-
Due to the presently poor level of designing and recognizing time patterns and generalizations of static neural networks, as well as the fact that learning speed is slow, a flatness pattern recognition system based on the Elman neural network was presented. The system is simple and efficient, because of its philosophy of over-learning or over-fitting a neural network and determining the number of the hidden nodes with experiential formulas and contrasting experiments. This system has generalization capability through learning the six basic flatness patterns and their combinations. The simulation shows that each error of actual output is less than 0.1, giving a good result, and that the capability of the system based on the Elman dynamic network pattern recognition is better than the system based on a BP network.
备注/Memo
收稿日期:2009-12-31.
基金项目:国家自然科学基金资助项目(50675186).
通信作者:张秀玲. E-mail: zxlysu@yahoo.com.cn.
作者简介:
张秀玲,女,1968年,教授、博士,主要研究方向为神经网络智能控制.获国家科技进步二等奖1项,省部级科技进步一等奖、二等奖各1项,发表学术论文60余篇.
李少清,男,1984年生,硕士研究生,主要研究方向为Elman神经网络板形识别.
田力勇,男,1985年生,硕士研究生,主要研究方向为智能控制.
更新日期/Last Update:
2010-11-26