[1]杨志君,叶东毅.动态学习的非负矩阵分解算法[J].智能系统学报,2010,5(4):320-326.
YANG Zhi-jun,YE Dong-yi.A dynamic learning algorithm based on nonnegative matrix factorization[J].CAAI Transactions on Intelligent Systems,2010,5(4):320-326.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
5
期数:
2010年第4期
页码:
320-326
栏目:
学术论文—人工智能基础
出版日期:
2010-08-25
- Title:
-
A dynamic learning algorithm based on nonnegative matrix factorization
- 文章编号:
-
1673-4785(2010)04-0320-07
- 作者:
-
杨志君,叶东毅
-
福州大学 数学与计算机科学学院,福建 福州350108
- Author(s):
-
YANG Zhi-jun,YE Dong-yi
-
College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
-
- 关键词:
-
非负矩阵分解; 动态学习; 初始化; 误差准则
- Keywords:
-
nonnegative matrix factorization; dynamic learning; initialization; error criteria
- 分类号:
-
TP181
- 文献标志码:
-
A
- 摘要:
-
对现有增量型非负矩阵分解算法存在的一些缺陷进行改进,给出了一个基于误差判断的增量算法有效性准则.在此基础上,利用增加样本前的非负矩阵分解结果进行增量分解初始化,提出了一种新的动态非负矩阵分解算法.在多个数据集上的实验结果表明该算法可以实现对基矩阵和编码矩阵的即时更新,且具有较低的计算复杂度,在处理动态数据集时,还可有效识别噪声点,是一个有效的动态分解算法.
- Abstract:
-
To improve the performance of the incremental nonnegative matrix factorization algorithm, error estimation criteria for judging the effectiveness of the incremental algorithm was presented. Then, a new dynamic nonnegative matrix factorization algorithm was proposed whereby incremental factorization was initialized with the already factorized matrices before adding new samples. Experimental results on a number of data sets showed that the proposed algorithm is capable of instantly updating both the base matrix and the code matrix. Another benefit of the method is that the computational complexity is relatively low. The proposed algorithm can also identify noise points when dealing with dynamic data. So it is a feasible and effective dynamic factorization algorithm.
更新日期/Last Update:
2010-09-20