[1]邓 貌,陈 旭,陈天翔,等.采用核聚类分析的KPCA改进算法[J].智能系统学报,2010,5(3):221-226.
DENG Mao,CHEN Xu,CHEN Tian-xiang,et al.mproved kernel principal component analysis based ona clustering algorithm[J].CAAI Transactions on Intelligent Systems,2010,5(3):221-226.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
5
期数:
2010年第3期
页码:
221-226
栏目:
学术论文—机器学习
出版日期:
2010-06-25
- Title:
-
mproved kernel principal component analysis based ona clustering algorithm
- 文章编号:
-
1673-4785(2010)03-0221-06
- 作者:
-
邓 貌1,陈 旭1,陈天翔2,王徽蓉1,鲁华祥1
-
1.中国科学院 半导体研究所,北京 100083;
2.厦门理工学院 电子与电气工程系,福建 厦门 361005
- Author(s):
-
DENG Mao1, CHEN Xu1, CHEN Tian-xiang2, WANG Hui-rong1, LU Hua-xiang1
-
1.Institute of Semiconductors, Chinese Academy Sciences, Beijing 100083, China;
2.Department of Electronic and Electrical Engineering, Xiamen University of Technology, Xiamen 361005, China
-
- 关键词:
-
核主分量分析; 核聚类; 子集划分; 协方差矩阵; 特征向量
- Keywords:
-
KPCA; kernel clustering; partition of training data set; covariance matrix; eigenvector
- 分类号:
-
TP18
- 文献标志码:
-
A
- 摘要:
-
为了解决核主分量分析方法处理大训练样本集时计算代价巨大的问题,在采用子集划分的KPCA算法基础上,提出采用核聚类划分子集,并用每个子集的协方差矩阵的特征值累积贡献率作为标准来选取相应的特征向量.分别在人工和实际数据集上测试,实验结果显示在同一累积贡献率和给定子集个数的条件下,采用核聚类划分子集总能得到较小尺寸的核矩阵,而核矩阵尺寸的减小有助于改善测试样本的特征提取速度以及降低特征分解核矩阵的时间复杂度.
- Abstract:
-
To overcome the computational problems of the standard kernel principal component analysis (KPCA) algorithm, the authors proposed a new method for eigenvector selection by evaluating the cumulative contribution rate of the eigenvalues of the covariance matrix. In addition, a new way to partition the training data set based on kernel clustering was also developed. The influence was then explored of different partitions of training data sets on the size of the final kernel matrix, on the conditions causing a given cumulative contribution rate, and on the number of subsets. Experimental results showed that a smaller kernel matrix can be obtained when kernel clustering method are used to partition the training dataset. The proposed algorithm can be helpful to reduce the time complexity of the eigen decomposition of a kernel matrix and to improve the speed of feature extraction for test samples.
备注/Memo
收稿日期:2009-12-19.
基金项目:国家“863”计划资助项目(2007AA04Z423, 2006AA01Z106);
国家自然科学基金资助项目(60576033);
福建省自然科学基金资助项目(2008J04001);
厦门市科技计划资助项目(3502Z20083031).
通信作者:陈 旭.E-mail:shendacx@163.com.
作者简介:
邓 貌,男,1986年生,硕士研究生,主要研究方向为优化算法、神经网络、模式识别等.
?陈 旭,女,1978年生,副研究员,主要研究方向为图像处理、模式识别、神经网络等.
陈天翔,男,1966年生,副研究员,主要研究方向为神经网络、智能计算等
更新日期/Last Update:
2010-07-14