[1]Mudasser NASEER,秦世引.基于非线性降维多项式逻辑斯蒂回归的图像/非图像数据的分类与识别[J].智能系统学报,2010,5(1):85-93.
 Mudasser NASEER,QIN Shi yin.Classification and recognition of image/nonimage data based on multinomial logistic regression with nonlinear dimensionality reduction[J].CAAI Transactions on Intelligent Systems,2010,5(1):85-93.
点击复制

基于非线性降维多项式逻辑斯蒂回归的图像/非图像数据的分类与识别

参考文献/References:
[1]JAMES M. Classification algorithms[M]. New York: John Wiley & Sons Inc, 1985.
[2]ROWEIS S T, SAUL L K, Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290: 23232326.
[3]TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290: 23192323.
[4]BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[J]. Neural Computations, 2003, 15(6): 13731396.
[5]COIFMAN R R, LAFON S. Diffusion maps[J]. Applied and Computational Harmonic Analysis, 2006, 21(1): 530.
[6]DONOHO D L, GRIMES C E. Hessian eigenmaps: new locally linear embedding techniques for highdimensional data[J]. Proceedings of the National Academy of Sciences of the USA, 2003, 100(10): 55915596.
[7]ZHANG Zhenyue, ZHA Hongyuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. SIAM Journal on Scientific Computing, 2004, 26(1): 313338.
[8]BUSA F K, KOCSOR A. Locally linear embedding and its variants for feature extraction[C]//IEEE International Workshop on Soft Computing Applications (SOFA). Szeged, Hungary and Arad, Romania, 2005: 216222.
[9]RIDDER D, DUIN R P W. Locally linear embedding for classification. Delft: PH200201[R]. Pattern Recognition Group, Dept of Image Science & Technology, Delft University of Technology. Delft, Netherlands, 2002.
[10]RIDDER D, KOUROPTEVA O, OKUN O, et al. Supervised locally linear embedding[C]//Proceedings of Artificial Neural Networks and Neural Information Processing (ICANN/ICONIP). Istanbul, Turkey, 2003: 333341.
[11]VLACHOS M, DOMENICONI C, GUNOPULOS D, et al. Nonlinear dimensionality reduction techniques for classification and visualization[C]//Proceedings of 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002: 645651.
[12]GENG Xin, ZHAN Dechuan, ZHOU Zhihua. Supervised nonlinear dimensionality reduction for visualization and classification[J]. IEEE Transactions on Systems, Man, and CyberneticsPart B: Cybernetics, 2005, 35(6): 10981107.
[13]LI Hongyu, CHEN Wenbin, SHEN Ifan. Supervised local tangent space alignment for classification[C]//Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence. Edinburgh, Scotland, 2005: 16201621.
[14]ROSS D A, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1): 125141.
[15]BENGIO Y, PAIEMENT JF, VINCENT P, et al. Outofsample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering[J]. Advances in Neural Information Processing Systems, 2004(16): 177184.
[16]HO T K. Nearest neighbors in random subspaces[J]. LNCS: Advances in Pattern Recognition, 1998, 1451: 640648. 
?[17]HOSMER D W, LEMESHOW S. Applied logistic regerssion[M]. 2nd ed. New York: John Wiley & Sons Inc, 2000: 128135.
[18]FUKUNAGA K. Introduction to statistical pattern recognition[M]. 2nd ed. San Diago: Academic Press, 1990: 219237.
相似文献/References:
[1]蒲凌杰,曾繁慧,汪培庄.因素空间理论下基点分类算法研究[J].智能系统学报,2020,15(3):528.[doi:10.11992/tis.201903031]
 PU Lingjie,ZENG Fanhui,WANG Peizhuang.Base point classification algorithm based on factor space theory[J].CAAI Transactions on Intelligent Systems,2020,15():528.[doi:10.11992/tis.201903031]

备注/Memo

Received Data:2009-08-15.
Foundation Item:This work is supported by The Major Program of Hitechnology Research and Development (863) of China.(2008AA12A200) and Programs of National Natural Science Foundation of China (60875072 ).
Corresponding Author:QIN Shi-yin.E-mail:qsy@buaa.edu.cn.
About the authors:
Mudasser NASEER received his Master’s and M.Phil degrees in Statistics from Govt. College University Lahore, Pakistan, in 1990 and 2001. He completed his MS in CS from LUMS Lahore in 2004. Presently he is pursuing his PhD in Pattern Recognition from Beihang University,Beijing,China.?
?秦世引, received his Bachelor Degree and Master’s Degree for Engineering Science in Automatic Controls and Industrial Systems Engineering from Lanzhou Jiaotong University in 1978 and 1984 respectively, and his PhD Degree in Industrial Control Engineering and Intelligent Automation from Zhejiang University in 1990.

更新日期/Last Update: 2010-03-31
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com