[1]张秀玲,陈丽杰,逄宗朋,等.RBF神经网络的板形预测控制[J].智能系统学报,2010,5(1):70-73.
ZHANG Xiu-ling,CHEN Li-jie,PANG Zong-peng,et al.A predictive system for process control of flatness in rolling mills using a radial basis function network[J].CAAI Transactions on Intelligent Systems,2010,5(1):70-73.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
5
期数:
2010年第1期
页码:
70-73
栏目:
学术论文—机器学习
出版日期:
2010-02-25
- Title:
-
A predictive system for process control of flatness in rolling mills using a radial basis function network
- 文章编号:
-
1673-4785(2010)01-0070-04
- 作者:
-
张秀玲1,2,陈丽杰1,2,逄宗朋1,2,朱春颖1,2,贾春玉1,2
-
1.燕山大学 电气工程学院,河北 秦皇岛 066004;
2.燕山大学 工业计算机控制工程河北省重点实验室,河北 秦皇岛 066004
- Author(s):
-
ZHANG Xiu-ling1,2, CHEN Li-jie1,2, PANG Zong-peng1,2, ZHU Chun-ying1,2, JIA Chun-yu1,2
-
1.College of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;
2.Key Lab of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, China
-
- 关键词:
-
板形控制; HC轧机; 液压弯辊控制; RBF神经网络; 预测控制
- Keywords:
-
shape control; HCmill; hydraulic control of bending rollers; RBF neural network; predictive control
- 分类号:
-
TP18
- 文献标志码:
-
A
- 摘要:
-
由于板带轧制的环境十分复杂,如温度的变化是无法避免的干扰,以及HC轧机液压弯辊系统的非线性和不确定性,使得按传统理论建立的模型和控制方法都难以达到理想的效果.针对这一问题,提出了一种基于径向基函数(RBF)神经网络的模型预测控制方案应用于带材控制中,以提高带材的成材率,充分发挥液压弯辊力对板形的调整作用,改善轧机系统的动态特性.仿真结果表明了该控制系统的性能良好,有较强的抗干扰能力和较好的鲁棒性和快速性.
- Abstract:
-
When plate and strip rolling is done in very complex environments, such as high crown (HC) rolling mills, there are many factors that make system control difficult. Factors affecting the flatness of steel sheets include temperature changes as well as nonlinearities that lead to uncertainty about results from bending roller forces. A novel predictive control program was proposed, one employing a radial basis function (RBF) neural network. It ensures flatness by controlling the bending forces of rollers. Simulation results confirmed this scheme has good performance and robustness.
备注/Memo
收稿日期:2008-10-06.
基金项目:国家自然科学基金资助项目(50675186).
通信作者:张秀玲.E-mail:zxlysu@yahoo.com.cn.
作者简介:
张秀玲, 女,1968年生,教授、博士,主要研究方向为神经网络智能控制.获国家科技进步二等奖1项,省部级科技进步一等奖、二等奖各1项,发表学术论文60余篇.
陈丽杰,女,1982年生,硕士研究生,主要研究方向为神经网络优化板形控制系统设计.
逄宗朋,男,1983年生,硕士研究生,主要研究方向为模糊神经网络优化板形设计.
更新日期/Last Update:
2010-04-06