[1]季瑞瑞,刘?? 丁.支持向量数据描述的基因表达数据聚类方法[J].智能系统学报,2009,4(6):544-548.[doi:10.3969/j.issn.1673-4785.2009.06.013]
JI Rui-rui,LIU Ding.Improved gene expression data clustering using a support vector domain description algorithm[J].CAAI Transactions on Intelligent Systems,2009,4(6):544-548.[doi:10.3969/j.issn.1673-4785.2009.06.013]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
4
期数:
2009年第6期
页码:
544-548
栏目:
学术论文—机器学习
出版日期:
2009-12-25
- Title:
-
Improved gene expression data clustering using a support vector domain description algorithm
- 文章编号:
-
1673-4785(2009)06-0544-05
- 作者:
-
季瑞瑞,刘?? 丁
-
西安理工大学 信控中心,陕西 西安 710048
- Author(s):
-
JI Rui-rui, LIU Ding
-
Center of Information and Control Engineering, Xi’an University of Technology, Xi’an 710048, China
-
- 关键词:
-
基因表达数据; 支持向量数据描述; 聚类; 模拟退火
- Keywords:
-
gene expression data; SVDD; clustering; simulated annealing
- 分类号:
-
TP18
- DOI:
-
10.3969/j.issn.1673-4785.2009.06.013
- 文献标志码:
-
A
- 摘要:
-
为改善传统的基因表达数据聚类方法正确率偏低的问题,研究了支持向量数据描述(SVDD)算法在基因表达数据聚类中的应用,该方法通过寻找最优分类超球实现对数据集的有效聚类.将类间信息融入聚类有效性评估准则中,通过模拟退火优化算法寻找SVDD算法中的最优核函数参数和惩罚因子,在训练时引入非样本数据提高运算效率.对酵母细胞生长周期的基因表达数据集的仿真实验结果表明,在新的聚类有效性评估准则下进行参数寻优,能够更快更好地得到最佳参数,同时,算法具有聚类精度高和运算速度快的优点.
- Abstract:
-
The application of the support vector domain description (SVDD) algorithm in gene expression data clustering was proposed as a means to improve the low accuracy of current clustering methods. This method effectivly clustered the dataset by finding the optimal separating hyper-sphere. Interclass information was introduced into the current clustering assessment criterion in the form of a minimum within-class distance. The simulated annealing (SA) algorithm was used to find the optimal kernel function parameter and the punishment factor of the SVDD algorithm. Non-sample data were added in training to increase computational efficiency. Simulation results using the yeast cell cycle expression dataset showed that optimal parameters can be obtained faster and more accurately with the new assessment criteria. Similar improvements were found in clustering accuracy and speed.
更新日期/Last Update:
2010-02-22