[1]杨小兵,何灵敏,孔繁胜.切换回归模型的抗噪音聚类算法[J].智能系统学报,2009,4(6):497-501.[doi:10.3969/j.issn.1673-4785.2009.06.005]
YANG Xiao-bing,HE Ling-min,KONG Fan-sheng.A noise-resistant clustering algorithm for switching regression models[J].CAAI Transactions on Intelligent Systems,2009,4(6):497-501.[doi:10.3969/j.issn.1673-4785.2009.06.005]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
4
期数:
2009年第6期
页码:
497-501
栏目:
学术论文—机器学习
出版日期:
2009-12-25
- Title:
-
A noise-resistant clustering algorithm for switching regression models
- 文章编号:
-
1673-4785(2009)06-0497-05
- 作者:
-
杨小兵1, 何灵敏1, 孔繁胜2
-
1.中国计量学院 计算机系,浙江 杭州 310018; 2.浙江大学 计算机学院,浙江 杭州 310012
- Author(s):
-
YANG Xiao-bing1, HE Ling-min1, KONG Fan-sheng2
-
1. Department of Computer Science, China Jiliang University, Hangzhou 310018, China; 2. College of Computer Science, Zhejiang University, Hangzhou 310012, China
-
- 关键词:
-
切换回归模型; 聚类; 抗噪音聚类算法
- Keywords:
-
switching regression models; clustering; noise-resistant clustering algorithm
- 分类号:
-
TP301.6
- DOI:
-
10.3969/j.issn.1673-4785.2009.06.005
- 文献标志码:
-
A
- 摘要:
-
对切换回归模型的聚类方法一般都没有考虑到噪音的影响,因此在含有噪音数据的情况下,用这些方法聚类的结果就会出现一定的偏差.为了减弱聚类过程中噪音数据的影响,提出了一种新的具有抵抗噪音能力的聚类算法,称为抗噪音聚类算法.该算法通过将已知数据集划分为非噪音数据集和噪音数据集2个子集,然后对非噪音数据集进行聚类分析,估计出模型的各个参数.通过对噪音数据集和非噪音数据集进行不断地调整,同时不断地修正得到的参数估计值,从而得到对聚类结果的优化.实验表明,抗噪音聚类算法能够有效地克服噪音数据对聚类结果的影响,并估计出优质的参数.
- Abstract:
-
Clustering methods for switching regression models usually neglect the effects of noise. As a result, errors usually exist if clustering is carried out in a noisy environment. In order to overcome the effects of noise, a new clustering algorithm, a noiseresistant clustering algorithm, was proposed. The algorithm partitions the dataset into two subdatasets, a noiseless dataset and a noisy dataset, and then performs clustering analysis on the noiseless dataset to estimate parameters. By continuous simultaneous adjustment of the noisy and noiseless datasets and by continuously revising estimated parameters, the results of clustering were improved. Simulation experiments demonstrated that the algorithm efficiently clusters noisy datasets and can provide good estimates of parameters.
更新日期/Last Update:
2010-02-17