[1]许晓云,王?? 龙.方差优化问题的复杂性:从生产线到计算机网络[J].智能系统学报,2009,4(6):475-482.[doi:10.3969/j.issn.1673-4785.2009.06.002]
 XU Xiao-yun,WANG Long.Complexity of variance optimization: from production lines to computer networks[J].CAAI Transactions on Intelligent Systems,2009,4(6):475-482.[doi:10.3969/j.issn.1673-4785.2009.06.002]
点击复制

方差优化问题的复杂性:从生产线到计算机网络

参考文献/References:
[1]CHENG T C E, PODOLSKY S. Justintime manufacturing: an introduction[M]. 2nd ed. London, UK: Chapman & Hall, 1996: 6-12.
[2]CHEN Y, FARLEY T, YE N. QoS requirements of network applications on the internet[J]. Information, Knowledge, Systems Management, 2003, 4(1): 55-76.
[3]HOPP W J, SPEARMAN M L. Factory physics[M]. 2nd ed. New York, USA: McGrawHill/Irwin, 2000: 287-331.
[4]BAKER K R, SCUDDER G D. Sequencing with earliness and tardiness penalties: a review[J]. Operations Research, 1990, 38(2): 193-242.
[5]YE N. Secure computer and network systems: modeling, analysis and design[M]. London, UK: John Wiley and Sons, 2008: 53-79.
[6]GAREY M R, JOHNSON D S. Computers and intractability: a guide to the theory of NP-completeness[M]. New York, USA: W H Freeman and Company, 1979: 1-181.
[7]MERTEN A G, MULLER M E. Variance minimization in single machine sequencing problems[J]. Management Science, 1972, 18(9): 518-528.
[8]YE N. QoS-centric stateful resource management in information systems[J]. Information Systems Frontiers, 2002, 4(2): 149-160.
[9]VENTURA J A, WENG M X. Minimize singlemachine completion time variance [J]. Management Science, 1995, 41(9): 1448.
[10]EILON S, CHOWDHURY I G. Minimizing waiting time variance in the single machine problem[J]. Management Science, 1977, 23(6): 567-575.
[11]LI X, YE N, LIU T, et al. Job scheduling to minimize the weighted waiting time variance of jobs[J]. Computers & Industrial Engineering, 2007, 52(1): 41.
[12]CAI X. Minimization of agreeably weighted variance in single machine systems[J]. European Journal of Operational Research, 1995, 85(3): 576-592.
[13]SCHRAGE L. Minimizing the time-in-system variance for a finite jobset[J]. Management Science, 1975, 21(5): 540-543.
[14]KANET J J. Minimizing variation of flow time in single machine systems[J]. Management Science, 1981, 27(12): 1453-1459.
[15]VANI V, RAGHAVACHARI M. Deterministic and random single machine sequencing with variance minimization [J]. Operations Research, 1987, 35(1): 111-120.
[16]HALL N G, KUBIAK W. Proof of a conjecture of Schrage about the completion time variance problem[J]. Operations Research Letters, 1991, 10(8): 467-472.
[17]MANNA D K, PRASAD V R. Bounds for the position of the smallest job in completion time variance minimization [J]. European Journal of Operational Research, 1999, 114(2): 411-419.
[18]BAGCHI U, SULLIVAN R S, CHANG Y L. Minimizing mean squared deviation of completion times about a common due date[J]. Management Science, 1987, 33(7): 894-906.
[19]De P, GHOSH J B, WELLS C E. On the minimization of completion time variance with a bicriteria extension[J]. Operations Research, 1992, 40(6): 1148-1155.
[20]GUPTA M C, GUPTA Y P, KUMAR A. Minimizing flow time variance in a single machine system using genetic algorithm[J]. European Journal of Operational Research, 1993, 70(3): 289-303.
[21]KUBIAK W. New result on the completion time variance minimization[J]. Discrete Applied Mathematics, 1995, 58(2): 157-168.
[22]KUBIAK W, CHENG J, KOVALYOV M Y. Fast fully polynomial approximation schemes for minimizing completion time variance[J]. European Journal of Operational Research, 2002, 137(2): 303-309.
[23]YE N, LI X, FARLEY T, et al. Job scheduling methods for reducing waiting time variance[J]. Computer and Operations Research, 2007, 34(10): 3069-3083.
[24]HALL N G. Single and multiple processor models for minimizing completion time variance[J]. Naval Research Logistics Quarterly, 1986, 33(1): 49-54.
[25]CAI X, CHENG T C E. Multimachine scheduling with variance minimization[J]. Discrete Applied Mathematics, 1998, 84(1/3): 55-70.
[26]MARANGOS C A, GOVANDE V, SRINIVASAN G, et al. Algorithms to minimize completion time variance in a two machine flowshop[J]. Computers and Industrial Engineering, 1998, 35(1/2): 101-104.
[27]XU X, YE N. Minimization of job waiting time variance on identical parallel machines[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37(5): 917-927.
[28]KUBIAK W. Completion time variance on a single machine is difficult[J]. Operations Research Letters, 1993, 14(1): 49-59.
[29]NULL L, LOBUR J. The essentials of computer organization and architecture[M]. 2nd ed. London, UK: Jones and Bartlett Publishers, Inc, 2006: 177-179.
[30]YE N, FARLEY T, LI X, et al. Batch scheduled admission control for computer and network systems[J]. Information Knowledge Systems Management, 2005, 5(4): 211-226.
[31]CAI X. A solvable case of the variance minimization problem[J]. Applied Mathematics Letters, 1993, 6(6): 97-100.
[32]XU X. Generalized completion time deviation problem on a single machine[R]. Beijing:Peking University, 2009.
[33]PINEDO M L. Scheduling: theory, algorithms, and systems[M]. 3rd ed. New York, USA: Springer, 2008: 111-142.

备注/Memo

收稿日期:2009-06-21.
基金项目:国家自然科学基金资助项目(10972002).
作者简介
许晓云,男,1980年生,博士后,主要研究方向为计算复杂性理论、计算机运筹规划以及计算机网络等.发表学术论文多篇.
王 龙,男,1964年生,教授、博士生导师,主要研究方向为复杂系统智能控制、多机器人系统的协调与控制、网络化控制系统的分析与综合、集群行为与集群智能、演化博弈与群体决策等,特别是在参数摄动系统、离散事件系统、混合集成系统的分析与控制方面,作出了突出贡献,取得了一系列具有国际水平的重要成就.日本学术振兴基金获得者.其研究成果被国内外广泛引用,并获得国家教委霍英东奖(研究类一等奖)、国家自然科学奖、国家教委科技进步奖(一等奖)、第一届Ho Outstanding Paper Award、第一届关肇直控制理论奖等多项奖励.

更新日期/Last Update: 2010-02-17
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com