[1]蒋 闻,李少远.预测控制器设定值柔化因子的在线调整[J].智能系统学报,2009,4(5):433-440.[doi:10.3969/j.issn.1673-4785.2009.05.008]
JIANG Wen,LI Shao-yuan.Real time tuning of the set-point softening factor for model predictive controllers[J].CAAI Transactions on Intelligent Systems,2009,4(5):433-440.[doi:10.3969/j.issn.1673-4785.2009.05.008]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
4
期数:
2009年第5期
页码:
433-440
栏目:
学术论文—智能系统
出版日期:
2009-10-25
- Title:
-
Real time tuning of the set-point softening factor for model predictive controllers
- 文章编号:
-
1673-4785(2009)05-0433-08
- 作者:
-
蒋 闻,李少远
-
上海交通大学自动化系,上海200240
- Author(s):
-
JIANG Wen, LI Shao-yuan
-
Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
-
- 关键词:
-
预测控制; 系统矩阵条件数; 设定值柔化因子; 参数在线调整
- Keywords:
-
model predictive control; condition number of system matrix; setpoint softening factor; online tuning
- 分类号:
-
TP273
- DOI:
-
10.3969/j.issn.1673-4785.2009.05.008
- 文献标志码:
-
A
- 摘要:
-
预测控制中,对控制量/控制增量加权因子λ和设定值柔化因子α的调节影响到控制系统的性能.调整预测控制器中控制量/控制增量加权因子λ对调节系统上升时间和超调量的作用是相反的.而且λ影响系统矩阵的条件数,存在模型失配时,对系统鲁棒性有很大的影响.设定值柔化因子α对于系统的动态响应也有很大的影响,调整λ和α对于系统的动态响应有类似的效果.因此,为了使闭环系统具有更好的控制性能,将参数λ设计成满足系统矩阵条件数的要求,并通过在线调整α以获得满意的动态性能.仿真结果表明了该方法的有效性.
- Abstract:
-
For predictive control, the tuning of weighting factor λ and set-point softening factor α greatly influences the performance of control systems. Tuning of? λ ?in a model predictive controller had negative effects on the regulation of overshoot and ascending time of the system. Moreover,? λ has an effect on the condition number of the system matrix. Thus, λ has a great effect on the robustness of the system when model mismatch occurs. Set-point softening factor?λ also has a large effect on the dynamic response of the control system. Tuning of both α and λ produces similar effects on the dynamic response of the control system. Hence, in order to achieve better control performance, λ was designed to satisfy the need of the condition number and α was assigned as an online tuning parameter. Simulations verified the effectiveness of this approach.
更新日期/Last Update:
2009-12-29