[1]朱帮助,林? 健.基于支持向量数据描述的无标签数据多类分类[J].智能系统学报,2009,4(2):131-136.
ZHU Bang-zhu,LIN Jian.Multiclass classification algorithm for unlabeled data using SVDD[J].CAAI Transactions on Intelligent Systems,2009,4(2):131-136.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
4
期数:
2009年第2期
页码:
131-136
栏目:
学术论文—机器学习
出版日期:
2009-04-25
- Title:
-
Multiclass classification algorithm for unlabeled data using SVDD
- 文章编号:
-
1673-4785(2009)02-0131-06
- 作者:
-
朱帮助1, 林? 健2
-
1.五邑大学系统科学与技术研究所,广东江门529020;
2.北京航空航天大学经济管理学院,北京100083
- Author(s):
-
ZHU Bang-zhu1, LIN Jian2
-
1.Institute of System Science and Technology, Wuyi University, Jiangmen 529020, China;
2. School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
-
- 关键词:
-
多类分类; 无标签数据; 支持向量数据描述; 主成分分析
- Keywords:
-
multiclass classification; unlabeled data; support vector data description; principle component analysis
- 分类号:
-
TP18
- 文献标志码:
-
A
- 摘要:
-
为解决支持向量机(SVM)在处理无标签数据多类分类上的难题,提出了一种基于支持向量数据描述(SVDD)的无标签数据多类分类算法.该方法只需要建立一个分类模型就可以实现多类聚类分类.首先采用主成分分析作数据预处理,提取输入数据的统计特征值,得到主成分特征指标输入到SVDD分类器进行多类聚类分类.以珠三角地区物流中心城市分类评价为研究对象,实证结果表明,采用主成分分析降低了数据维度,有效浓缩了评估信息,SVDD分类器很好地区分了各中心城市,实现了多类分类的目的.
- Abstract:
-
Support vector machines (SVM) may encounter problems in dealing with multiclass classification of unlabeled data. So we suggested a new multiclass classification algorithm based on support vector data description (SVDD) in this paper. Compared with other multiclass classification algorithms, the proposed algorithm only needed one classifier to complete the multiclass clustering classification. With this method, principal component analysis (PCA) was used to preprocess original data to extract statistically characteristic values; inputting these values into an SVDD classifier completed multiclass clustering classification. Taking nine cities in the Pearl River delta area as an example, an evaluation was made of the developmental levels of the logistics of these cities. The test results showed that data dimensions were reduced by using principal component analysis, and the evaluated information was effectively concentrated by adopting feature extraction with PCA. Moreover, the SVDD classifier could distinguish the central cities very well, so it can be used as an effective approach for multiclass classification of unlabeled data.
更新日期/Last Update:
2009-05-04