[1]朱帮助,林? 健.基于支持向量数据描述的无标签数据多类分类[J].智能系统学报,2009,4(2):131-136.
 ZHU Bang-zhu,LIN Jian.Multiclass classification algorithm for unlabeled data using SVDD[J].CAAI Transactions on Intelligent Systems,2009,4(2):131-136.
点击复制

基于支持向量数据描述的无标签数据多类分类

参考文献/References:
[1]VAPNIK V.Statistical learning theory[M]. New York:Wiley, 1998:5964.?
[2]PLATT J C, CRISTIANINI N, SHAWE T J. Large margin DAGs for multiclass classification[C]//Advances in Neural Information Processing Systems 12.Cambridge,Mass:MIT Press:547553.
[3]WESTON J, WATKINS C. Multiclass support vector machines[R]. CSDTR9804. London: Royal Holloway University,1998.
[4]ZHOU Z H , LI M. Tritraining:exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 15291541
[5]TAX D M J, DUIN R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11/13): 11911199.
[6]TAX D, DUIN R. Outlier detection using classifier instability[J]. Advances in Pattern Recognition, Lecture notes in Computer Science, 1998,1451:593601.
[7]JIANG Shengyi, SONG Xiaoyu, WANG Hui, et al. A clusteringbased method for unsupervised intrusion detections[J].Pattern Recognition Letters, 2006, 27(7): 802810.
[8]BANERJEE A. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE Trans on Geoscience and Remote Sensing, 2006, 44(8):22822290
[9] 赵学风,段晨东,刘义艳,等.一种基于支持向量数据描述的损伤诊断方法[J].系统仿真学报, 2008,20(6):15701573.
?ZHAO Xuefeng, DUAN Chendong, LIU Yiyan,et al. Structure damage diagnosis method based on SVDD technique[J]. Journal of System Simulation, 2008,20(6):15701573.
[10]KIM K I, JUNG K, KIM H J. Face recognition using kernel principal component analysis[J]. IEEE Signal Procession Letters,2002, 9(2): 4042.
[11]赵 闯,刘 凯,李电生.SOFM神经网络在物流中心城〖LL〗市分类评价中的应用[J].中国公路学报,2004,17(4):119122. 
ZHAO Chuang, LIU Kai, LI Diansheng. Application of SOFM neural network for classification and evaluation of logistics center city[J].China Journal of Highway and Transport, 2004,17(4):119122.
相似文献/References:
[1]陈涛,谢在鹏,屈志昊.基于动态阈值增强原型网络的联邦半监督学习模型[J].智能系统学报,2024,19(3):534.[doi:10.11992/tis.202311015]
 CHEN Tao,XIE Zaipeng,QU Zhihao.Federated semi-supervised learning model based on dynamic threshold enhanced prototype network[J].CAAI Transactions on Intelligent Systems,2024,19():534.[doi:10.11992/tis.202311015]

备注/Memo

收稿日期:2008-07-12.
基金项目:国家自然科学基金资助项目(70471074)
作者简介:
朱帮助,男,1979年生,讲师,博士,主要研究方向为复杂系统分析与建模、智能信息处理,发表学术论文近20篇,其中多篇被SCI、EI、ISTP收录.
林 健,男,1958年生,教授,博士生导师,博士,主要研究方向为复杂系统建模与仿真、信息管理与信息系统,主持多项国家自然科学基金项目和省部级科研项目,发表学术论文150余篇,其中多篇被SCI、EI、ISTP收录.
通信作者:朱帮助.E-mail:wpzbz@126.com.

更新日期/Last Update: 2009-05-04
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com