[1]曹苏群,王士同,陈晓峰,等.最佳鉴别矢量集在无监督模式下的扩展[J].智能系统学报,2008,3(6):511-522.
CAO Su-qun,WANG Shi-tong,CHEN Xiao-feng,et al.Extending the optimal set of discriminant vectors for an unsupervised pattern[J].CAAI Transactions on Intelligent Systems,2008,3(6):511-522.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
3
期数:
2008年第6期
页码:
511-522
栏目:
学术论文—人工智能基础
出版日期:
2008-12-25
- Title:
-
Extending the optimal set of discriminant vectors for an unsupervised pattern
- 文章编号:
-
1673-4785(2008)06-0511-12
- 作者:
-
曹苏群1 ,2,王士同1,陈晓峰1,邓赵红1
-
1.江南大学信息学院,江苏无锡214122; 2.淮阴工学院机械系,江苏淮安223001
- Author(s):
-
CAO Su-qun1,2, WANG Shi-tong1, CHEN Xiao-feng1, DENG Zhao-hong1
-
1.School of Information, Jiangnan University, Wuxi 214122, China;2.Department of Mechanical Engineering, Huaiyin Institute of Technology, Huaian 223001,China
-
- 关键词:
-
最佳鉴别矢量集; 无监督模式; Fisher准则; 半模糊聚类
- Keywords:
-
optimal set of discriminant vectors; unsupervised pattern; Fisher criterion; semi-fuzzy clustering
- 分类号:
-
TP181
- 文献标志码:
-
A
- 摘要:
-
基于Fisher准则函数的最佳鉴别矢量集是一种重要的有监督特征提取方法,在模式识别领域有着重要的影响.提出一种将最佳鉴别矢量集扩展到无监督模式下的方法,其基本思想是通过定义的模糊Fisher准则函数将Fisher线性判别扩展成一种半模糊聚类算法,通过该算法求得最佳鉴别矢量和模糊散布矩阵,进而构造出最佳鉴别矢量集.实验表明,在聚类有效性、分类准确率均优于无监督模式下常用的主成分分析特征提取算法.
- Abstract:
-
The optimal set of discriminant vectors, based on the Fisher criterion function, is an important supervised feature extraction method and has great influence in the area of pattern recognition. In this paper, an extension of the optimal set of discriminant vectors in unsupervised patterns is presented. The basic idea is to extend Fisher linear discriminants to a novel semifuzzy clustering algorithm through a predefined fuzzy Fisher criterion function. With the proposed algorithm, an optimal discriminant vector and fuzzy scatter matrixes can be figured out and then an unsupervised optimal set of discriminant vectors can be obtained. Experimental results for real datasets, testing clustering validity and correct classification recognition rates, demonstrated that this method is superior to the principal component analysis feature extraction algorithm in unsupervised patterns.
更新日期/Last Update:
2009-04-03