[1]高玮.新型智能仿生模型——蚁群模型[J].智能系统学报,2008,3(3):270-278.
 GAO Wei.The intelligent bionic model——ant colony[J].CAAI Transactions on Intelligent Systems,2008,3(3):270-278.
点击复制

新型智能仿生模型——蚁群模型

参考文献/References:
[1] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperaing agents .IEEE Trans. on SMC. 1996,261, 26(1) :29-41 .
?[2] Deneubourg J L,Goss S. Collective patterns and decision making .Ethology,Ecology&Evolution. 1989,14, 1(4) :295-311 .
?[3] G. Di Caro, M. Dorigo AntNet. Distributed stigmergetic control for communications networks[J] .Journal of Artificial Intelligence Research, 1998, (9) :317-365 .
[4] Elbeltagi,E,Hegazy,T,and Grierson,D. Comparison among five evolutionary-based optimization algo- rithms .Advanced Engineering Informatics, 2005,19, 19 (1) :43-53 .
?[5] Stutzle T, Dorigo M. A short convergence proof for a class of ant colony optimization algorithms[J] .IEEE Transactions on Evolutionary Computation, 2002,6, 6 (4) :358-365 .
[6] LUMER E D,FAIETAB. Diversity and adaptation in popu-lations of clustering ants[C] .Proc of3rd Conf on Simula-tion of Adaptive Behavior. Cambridge: MIT Press, 1994, :501-508 .
?[7] DENEUBOURG L,GOSS C,FRANKS N,et al. The dy-namics of collective sorting robot-like ants and ant-like ro-bots[C] .Proceedings of the first international conference on simulation of adaptive behavior on from animals to ani-mates. Cambridge: MITPress, 1991, :356-367
. [8] BONABEAU E,THERAULAZ G,DENEUBOURG J L. Quantitative study of the fixed threshold model for the regu-lation of division of labour in insect societies[C] .Pro-ceedings of Biological Sciences. London: The Royal Socie-ty, 1996, :1565-1569
. [9] KONG Min,TIAN Peng,KAO Yucheng. A new ant colo-ny optimization algorithm for the multidimensional Knap-sack problem[J] .Computers and Operations Research, 2008,35, 35 (8) :2672-2683 .
?[10] CAI Jiejin,MA Xiaoqian,LI Lixiang,et al. Chaotic ant swarm optimization to economic dispatch[J] .Electric Power Systems Research, 2007,77, 77 (10) :1373-1380 .
[11] BERND S,STEFAN J,MARTIN M. Hardware-oriented ant colony optimization[J] .Journal of Systems Architec-ture, 2007,53, 53 (7) :386-402 .
[12] TRAILI W,SIARRY P. A new charged ant colony algo-rithm for continuous dynamic optimization[J] .Applied Mathematics and Computation, 2008,197, 197 (2) :604-613 .
?[13] DURAN TM. A heuristic approach to find the global opti-mum of function[J] .Journal of Computational and Ap-plied Mathematics, 2007,209, 209 (2) :160-166 .
[14] LINA B MT,LUB C Y,SHYUC S J,et al. Development of new features of ant colony optimization for flowshop scheduling[J] .International Journal of Production Eco-nomics, 2008,112, 112 (2) :742-755
. [15] GAMBARDELLA L M,TAILLARD D,DORIGO M. Ant colonies for the QAP[J] .Journal of the Operational Re-search Society, 1999,50, 50 (2) :167-176 .
[16] TEICHT,FISCHER M,VOGEL A,et al. A newant col-ony algorithm for the job shop scheduling problem[C] .Proc of the Genetic and Evolutionary Computation Conf2001. San Fransisco: Morgan Kaufmann Publishers, 2001, :803-808 .
[17] COELLO C A,CHRISTIANSEN A D,AGUIRRE A H. Ant colony system for the design of combinational logic cir-cuits[M] .Evolvable Systems:From Biology to Hardware. Edinburgh: Springer Verlag, 2000, :21-30 .
[18] CHRISTIANB,MATEUY V,MARIAJ B. An ant colony optimization algorithm for DNAsequencing by hybridization[J] .Computers and Operations Research, 2008,35, 35 (11) :3620-3635 .
?[19] LEANDRO Dos S C,VIVIANA C M. Use of chaotic se-quences in a biologically inspired algorithm for engineering design optimization[J] .Expert Systems with Applications, 2008,34, 34 (3) :1905-1913 .
?[20] Za AARON C,ANGUS R S. Application of two ant colony optimisation algorithms to water distribution system optimi-zation[J] .Mathematical and Computer Modelling, 2006,44, 44 (5) :451-468 .
[21] 许剑,吕志民,徐金梧. 带有侦察子群的蚁群系统[J]北京科技大学学报, 2006,(08) .
?[22] 赵强,敬东,李正. 蚁群算法在配电网规划中的应用[J]电力自动化设备, 2003,(02) .
[23] 王静,蒋珉. 若干优化算法的运行分析比较[J]计算机仿真, 2006,(03) .
?[24] 熊伟清,魏平. 二进制蚁群进化算法[J]自动化学报, 2007,(03) .
?[25] 段海滨,王道波,于秀芬. 几种新型仿生优化算法的比较研究[J]计算机仿真, 2007,(03) .
?[26] 肖智,邹刚. 基于蚁群算法的组合预测方法在我国R&D经费投入中的应用[J]科学学与科学技术管理, 2006,(09) .
?[27] 李衍达. 信息科学与生物之谜[J]世界科技研究与发展, 1999,(03) .
[28] 高玮,郑颖人. 蚁群算法及其在硐群施工优化中的应用[J]岩石力学与工程学报, 2002,(04) .
[29] 许殿,史小卫,程睿. 回归蚁群算法[J]西安电子科技大学学报, 2005,(06) .
[30] 陈崚,章春芳. 自适应的并行蚁群算法[J]小型微型计算机系统, 2006,(09) .

备注/Memo

收稿日期:2007-11-10
基金项目:湖北省教育厅科研基金资助项目(D200618004)
作者简介:高玮,男,1971年生,副教授,博士,主要研究方向为仿生系统模型,仿生计算理论及其应用,目前已主持国家自然科学基金,省自然科学基金,省教育厅项目等科研项目多项,发表论文100余篇,被SCI,EI等检索50余篇E-mail:gaow@whpu.edu.cn

更新日期/Last Update: 2009-05-14
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com