[1]刘波,杨路明,邓云龙,等.融合粒子群算法改进XML数据智能清洗策略[J].智能系统学报,2008,3(3):226-234.
LIU Bo,YANG Lu-ming,DENG Yun-long.An intelligence data cleaning strategy for XML database using PSO[J].CAAI Transactions on Intelligent Systems,2008,3(3):226-234.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
3
期数:
2008年第3期
页码:
226-234
栏目:
学术论文—人工智能基础
出版日期:
2008-06-25
- Title:
-
An intelligence data cleaning strategy for XML database using PSO
- 文章编号:
-
1673-4785(2008)03-0226-08
- 作者:
-
刘波; 杨路明; 邓云龙;
-
中南大学信息学院; 中南大学湘雅附三医院; 湖南长沙; 湖南长沙410083;
- Author(s):
-
LIU Bo1; YANG Lu-ming1; DENG Yun-long2
-
1.College of Information Science and Engineering; Central-south University; Changsha 410083; China;
2.The 3rd Xiangya Hospital; Changsha 410013; China
-
- 关键词:
-
XML键; 粒子群算法; 数据清洗; 隐马尔可夫模型
- Keywords:
-
XML key; particle swarm optimization; data cleaning; hidden Markov model
- 分类号:
-
TP311.13
- 文献标志码:
-
A
- 摘要:
-
针对XML数据质量问题,以XML键为基础、借助多模板隐马尔可夫模型信息抽取策略与粒子群算法构建新的XML数据清洗方法;为了提高XML相似性数据并行检测效率,尝试利用波函数对粒子群算法进行相应优化.对比其他XML数据清洗算法,一系列仿真实验表明改进的XML数据清洗方法不仅自适应学习功能强、人工参与程度低、计算量小,而且时间性能有94%左右提升.
- Abstract:
-
To imp rove XML data quality, this paper p roposes a new XML data cleaning method based on XML2 keys, the information draw2out strategy of multip le temp lates, the hidden Markov model (HMM) , and particle swarm op timization ( PSO). To imp rove parallel efficiencywhen detecting similar XML records, a wave function is emp loyed to imp rove the PSO algorithm. A series of simulations indicated that, compared with other XML data cleaning algorithms, the imp roved XML data cleaning algorithm has a more powerful adap tive learning capability, requires less human interaction, and reduces computational time by about 94%.
更新日期/Last Update:
2009-05-14