[1]赵春晖,陈万海,万? 建.一种改进的多类支持向量机超光谱图像分类方法[J].智能系统学报,2008,3(1):77-82.
ZHAO Chun-hui,CHEN Wan-hai,WAN jian.An improved hyperspectral image classification method for? a multiclass support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3(1):77-82.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
3
期数:
2008年第1期
页码:
77-82
栏目:
学术论文—机器学习
出版日期:
2008-02-25
- Title:
-
An improved hyperspectral image classification method for? a multiclass support vector machine
- 文章编号:
-
1673-4785(2008)01-0077-06
- 作者:
-
赵春晖,陈万海,万? 建
-
哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
- Author(s):
-
ZHAO Chun-hui, CHEN Wan-hai, WAN jian
-
College of Information and Communication Engineering, Harbin Engineering Univer sity, Harbin 150001,China
-
- 关键词:
-
支持向量机; 二次分类; 多类支持向量机
- Keywords:
-
support vector machine; secondary classification; multiclass SVM
- 分类号:
-
TN919.81
- 文献标志码:
-
A
- 摘要:
-
支持向量机(SVM)是建立在统计学理论基础上的一种机器学习方法,用于解决二类分类问题,如何有效地将其推广到多类分类问题是一个正在研究的课题.总结了现有的主要的支持向量机多类分类算法,并在1a1 SVM分类算法基础上提出一种二次分类的方法 . 改良了惩罚因子,提高了不易分的类别之间的可分程度.通过对超光谱图像进行分类实验,结果表明该方法具有较高的分类精度.
- Abstract:
-
SVM is a machine learning method developed on the basis of statistics theory and originally designed for binary classification problems. The most effe ctive way to extend it for multiclass classification is still an area of conside rable discussion. This paper presental a secondary classification method based o n 1a1 SVM classification algorithm after a general overview of typical method s for a multiclass SVM. Our method improves the penalty factors, so it enhances th e divisibility of classes that were difficult to classify. Experimental results o f hyperspectral image classification showed that the suggested multiclass SVM ha s higher classification precision.
更新日期/Last Update:
2009-05-10