[1]张一鸣,欧宗瑛,王 虹.基于C均值K近邻算法的面部表情识别[J].智能系统学报,2008,3(1):57-61.
ZHANG Yi-ming,OU Zong-ying,WANG Hong.Facial expression recognition based on Cmeans and K-nearest neighbor algorithms[J].CAAI Transactions on Intelligent Systems,2008,3(1):57-61.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
3
期数:
2008年第1期
页码:
57-61
栏目:
学术论文—机器感知与模式识别
出版日期:
2008-02-25
- Title:
-
Facial expression recognition based on Cmeans and K-nearest neighbor algorithms
- 文章编号:
-
1673-4785(2008)01-0057-05
- 作者:
-
张一鸣,欧宗瑛,王 虹
-
大连理工大学机械工程学院,辽宁大连116023
- Author(s):
-
ZHANG Yi-ming, OU Zong-ying, WANG Hong
-
School of Mechanical Engineering, Dalian University of Technol ogy,Dalian 116023,China
-
- 关键词:
-
面部表情识别; C均值聚类; K近邻; Gabor小波; Fisherface判别分析
- Keywords:
-
facial expression recognition; Cmeans clusterin g; K-nearest neighbor; Gabor wavelet; fisherface discriminant analysis
- 分类号:
-
TP39141
- 文献标志码:
-
A
- 摘要:
-
随着人工智能与模式识别技术的不断发展,面部表情识别在智能人机交互中发挥着越来越重要的作用.通过对人的面部表情分类的研究,提出了一种使用C均值聚类、K近邻算法的面部表情分类方法.对参加训练的表情图像先进行Gabor小波变换,然后使用Fisherface判别分析方法进行变换,求得特征空间.再将已进行Gabor变换的标准表情图像投影到特征空间,进行C均值聚类得到子类表情模板.对于一幅待识别的表情图像,使用K近邻算法与子类表情模板比较,将该表情图像分类.使用该方法,在公开的日本女人表情人脸库上实测达到了95 8%的识别率.
- Abstract:
-
With the rapid development of artificial intelligence and pattern rec ognition, facial expression recognition plays an important role in intelligent humanmachine interaction. In this paper, a facial expression classific a tion method is presented which uses a Cmeans and Knearest neighbor a lgorithm a s the basis of analysis for the classification of facial expressions. First the images to be analyzed are transformed with Gabor wavelets, and then Fisherface d i scriminate analysis is performed to generate a feature space. Next, the images w hich were transformed with Gabor wavelets are projected into the feature space a n d Cmeans clustering performed on the projected images to generate subexp ress io n templates. Finally, the type of expression is identified by comparing the inpu t expression images with the subexpression templates by using a Knearest nei gh bor algorithm. Experiments on the public Japanese female facial expression datab as e show that the method proposed in this paper can achieve a 95.8% recognition rate.
备注/Memo
收稿日期:2007-02-10.
基金项目:大连理工大学与中科院沈阳自动化研究所联合探索基金资助项目(DUTSIA 2006).
作者简介:
张一鸣,女,1981年生,硕士研究生,主要研究方向为模式识别.
欧宗瑛,男,1936年生,教授,博士生导师,主要研究方向为计算机辅助设计、计算机图形学和图像处理.获教委和机械部科技三等奖各一项,辽宁省科技一等奖一项.参与主编的机械设计手册和机电类规划教材分别获1995全国科技图书二等奖和2002全国优秀教材二等奖. 发表的学术论文被SCI检索12篇,被EI检索95篇.
王 虹,男,1964年生,博士研究生,主要研究方向为模式识别、图像处理
通讯作者:欧宗瑛.E-mail:ouzyg@dlut.edu.cn.
更新日期/Last Update:
2009-05-10