[1]钱淑渠,张著洪.动态多目标免疫优化算法及性能测试研究[J].智能系统学报,2007,2(5):68-77.
QIAN Shu-qu,ZHANG Zhu-hong.Dynamic multiobjective immune optimization algorithm 〖JZ〗and performance test[J].CAAI Transactions on Intelligent Systems,2007,2(5):68-77.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
2
期数:
2007年第5期
页码:
68-77
栏目:
学术论文—人工智能基础
出版日期:
2007-10-25
- Title:
-
Dynamic multiobjective immune optimization algorithm 〖JZ〗and performance test
- 文章编号:
-
1673-4785(2007)05-0068-10
- 作者:
-
钱淑渠1,2,张著洪1
-
1. 贵州大学理学院,贵州贵阳550025;
2.贵州安顺学院数学系,贵州安顺561000
- Author(s):
-
QIAN Shu-qu1,2, ZHANG Zhu-hong1
-
1.College of Science, Guizhou University, Guizhou 550025, China;
2.Department of Mathematics, Anshun College, Anshun 561000, China
-
- 关键词:
-
动态多目标优化; 时变 Pareto面; 环境跟踪; 自适应 ζ邻域; 免疫算法
- Keywords:
-
dynamic multiobjective optimization; timevarying Pareto front; en vironment tracking; adaptive neighborhood; immune algorithm.
- 分类号:
-
TP301.6
- 文献标志码:
-
A
- 摘要:
-
基于生物免疫系统的自适应学习、免疫记忆、抗体多样性及动态平衡维持等功能, 提出一种动态多目标免疫优化算法处理动态多目标优化问题. 算法设计中, 依据自适应ζ邻域及抗体所处位置设计抗体的亲和力, 基于Pareto控制的概念,利用分层选择确定参与进化的抗体, 经由克隆扩张及自适应高斯变异,提高群体的平均亲和力,利用免疫记忆、动态维持和Average linkage聚类方法, 设计环境识别规则和记忆池, 借助3种不同类型的动态多目标测试问题,通过与出众的动态环境优化算法比较, 数值实验表明所提出算法解决复杂动态多目标优化问题具有较大潜力.
- Abstract:
-
A dynamic multiobjective immune optimization algorithm suitable for d ynamic multiobjective optimization problems is proposed based on the functions of adaptive learning, immune memory, antibody diversity and dynamic balance main tenance, etc. In the design of the algorithm, the scheme of antibody affinity w a s designed based on the locations of adaptiveneighborhood and antibody; ant i bodies participating in evolution were selected by Pareto dominance. In order to enhance the average affinity of the population, clonal proliferation and adapti ve Gaussian mutation were adopted to evolve excellent antibodies. Furthermore, t he average linkage method and several functions of immune memory and dynamic bal ance maintenance were used to design environmental recognition rules and the mem ory pool. The proposed algorithm was compared against several popular multiobj e ctive algorithms by means of three different kinds of dynamic multiobjective b e nchmark problems. Simulations show that the algorithm has great potential in s olving dynamic multiobjective optimization problems.
备注/Memo
收稿日期:2006-12-05.
基金项目:国家自然科学基金资助项目(60565002).
作者简介:
钱淑渠, 男, 1978年生,硕士, 主要研究方向为智能算法.
张著洪, 男, 1966年生, 副教授, 工学博士, 主要研究方向为控制理论与计算智能. E-mail:sci.zhzhang@gzu.edu.cn.
更新日期/Last Update:
2009-05-08