[1]金一,阮秋琦.一种局部加权的二维主成分分析算法及其在人脸识别中的应用[J].智能系统学报,2007,2(3):25-29.
JIN Yi,RUAN Qiu-qi.A partially weighted twodimensional PCA for face recognition[J].CAAI Transactions on Intelligent Systems,2007,2(3):25-29.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
2
期数:
2007年第3期
页码:
25-29
栏目:
学术论文—机器感知与模式识别
出版日期:
2007-06-25
- Title:
-
A partially weighted twodimensional PCA for face recognition
- 文章编号:
-
1673-4785(2007)03-0025-05
- 作者:
-
金一, 阮秋琦
-
北京交通大学计算机与信息技术学院,北京100044
- Author(s):
-
JIN Yi, RUAN Qiu-qi
-
College of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
-
- 关键词:
-
二维主成分分析; 局部加权; 人脸识别; 加权特征提取
- Keywords:
-
twodimensional principal component analysis; partiallyweighted; face recognition; weighted feature extraction
- 分类号:
-
TP391.4
- 文献标志码:
-
A
- 摘要:
-
提出了一种将局部特征加权与二维主成分分析相结合的局部加权的二维主成分分析方法.引入了二维局部加权特征子空间的概念,将各类样本映射到这个局部加权特征子空间,再通过计算测试样本到加权子空间的距离进行样本的分类.使用这种方法在ORL人脸库上进行测试,结果表明,经过局部特征加权的二维主成分分析方法比普通的二维主成分分析方法具有更优的性能,并且在提高识别率的同时算法的复杂程度并没有明显增加.
- Abstract:
-
This paper proposes face recognition software that uses twodimensional principal component analysis (2DPCA) in conjunction with partial feature weighting by applying twodimensional partialweighting to the characteristic subspace. First faces are mapped onto this partially weighted 2DPCA subspace, then the samples are classified by calculating the distance from the samples to the partially weighted 2DPCA subspace. To test this new method, ORL face databases were used and it was found that the recognition rate was higher than with either 2DPCA or PCA and the computational complexity did not increase significantly.
备注/Memo
收稿日期:2006-09-08.
基金项目:国家重点基础研究发展计划(973)资助项目(2004BC318005);教育部博士点基金资助项目(60 472033)
作者简介:
金 一,女,1982年生,博士研究生,主要研究方向为图像处理、模式识别、人脸识别. E-mail:jineejin@gmail.com.
阮秋琦,男,1944年生,教授,博士生导师,主要研究方向为图像处理、计算机视觉、模式识别、虚拟现实.曾多次获得省部级科技进步奖,发表论文150余篇,出版专著3部.
更新日期/Last Update:
2009-05-06