[1]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(2):40-47.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2(2):40-47.
点击复制

粗糙集理论及其在智能系统中的应用

参考文献/References:
[1]PAL S, SKOWRON A. Rough fuzzy hybridization: a new trend in de cision making[M]. Singapore: SpringerVerlag, 1999.
[2]WALCZAK B, MASSART D L. Rough sets theory[J]. Chemometrics and Int elligent Laboratory Systems,1999, 47:1-16.
[3]YAO Y Y.Constructive and algebraic methods of the theory of rough s ets[J]. Journal of Information Sciences,1998, 109:21-47.
[4]WU Weizhi, ZHANG Wenxiu. Constructive and axiomatic approaches of fuzzy ap proximation operators[J]. Information Sciences,2004, 159 : 233-254.
[5]PAWLAK Z. Rough set approach to knowledge-based decision support[J]. Eur opean Journal of Operational Research,1997, 99: 48-57.
[6]PAWLAK Z. Rough sets and intelligent data analysis[J]. Information Scien ces,2002,147:1-12.
[7]LINGRAS P J, YAO Y Y. Data mining using extensions of the rough set model[ J]. Journal of the American Society for Information Science, 1998,49(5):415-422.
[8]黄金杰.粗糙集理论在智能信息处理机控制中的应用研究[D].哈尔滨:哈尔滨工业大学,2004.
 HUANG Jinjie.Research and application of rough sets theory in the control of int elligent information processor[D].Harbin:Harbin Institute of Technology,2004.
[9]YAO Y Y. Two views of the theory of rough sets in finite universes[ J]. International Journal of Approximate Reasoning, 1996, 15(2): 291-317.
[10]张文修,仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出版社, 2005.
[11]KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J] . Information Sciences, 1998, 112(1): 39-49.
[12]GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets theory for multicriteria de cision analysis[J]. European Journal of Operational Research, 2001, 129(1): 1- 47.
[13]HU Qinghua, YU Daren, XIE Zongxia. Informationpreserving hybrid da ta red uction based on fuzzy-rough techniques[J]. Pattern Recognition Letters, 2006, 27(5): 414-423.
[14]YAO Yiyu, CHEN Yaohua. Subsystem based generalizations of rough set a ppro ximations[A]. Proceedings of 15th International Symposium on Methodologies for Intelligent Systems[C].Berlin, 2005.
[15]YAO Y Y. Relational interpretations of neighborhood operators and rough s et approximation operators[J]. Information Sciences, 1998, 111(1-4): 239-259. 
[16]SLOWINISKI R. Intelligent Decision Support[M]. Dordrecht: Kluwer Academ ic, 1992.
[17]GUAN J W, BELL D A. Rough computational methods for information systems a rtificial intelligence[J]. 1998, 105(1): 77-103.
[18]王国胤,于 洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报, 2002, 25(7):759-766.
WANG Guoyin, YU Hong, YANG Dachun. Decision table reduction based on conditio nal information entropy[J]. Chinese J Computers, 2002, 25(7): 759-766.
[19]JAKUB W. Finding minimal reducts using genetic algorithm[R]. ICS Research Report 16/95, Warsaw university of Technology, 1995
[20]乔 斌,李玉榕,蒋静坪.粗糙集理论的分层递阶约简算法及其信息论基础[ J].控制理论与应用,2004,21(2):195-199.
 QIAO Bin, LI Yurong, JIANG Jingping. Hierarchical reduction approach of rough se ts theory and its basis on the information theory[J]. Control Theory & Applica tion, 2004, 21(2): 195-199.
[21]MITRA S, SANKAR K P, MITRA P. Data mining in soft computing framew ork: a survey[J]. IEEE Transactions on Neural Networks, 2002, 13(1): 3-14.
[22]BANERJEE M, MITRA S, SANKAR K P. Rough fuzzy MLP: knowledge encoding and c lassification[J]. IEEE Transactions on Neural Networks, 1998, 9(6):1203-1216. 
[23]GARDNER M W, DORLING S R. Artificial neural networks (the multilayer perc eptron)a review of applications in the atmospheric sciences[J]. Atmospheric Environment, 1998, 32(14-15): 2627-2636.
[24]AHN B S, CHO S S, KIM C Y. The integrated methodology of rough set theory and artificial neural network for business failure prediction[J]. Expert Syst ems with Application,2000, 18 (4): 65-74.
[25]HU Qinghua, YU Daren, XIE Zongxia. Improvement on classification performa nce based on multiple reduct ensemble[A]. Proceedings of the 2004 IEEE Confere nce on Cybernetics and Intelligent Systems[C]. Singapore, 2004.
[26]DIMITRAS A I, SLOWINSKI R, SUSMAGA R, et al. Business failure predictio n using rough sets[J]. European Journal of Operational Research, 1999, 114(2): 263-280.
[27]GAO Yun, HOU Yuanbin. Application of rough set theory on system modeling [A]. Proceedings of the 5th World Congress on Intelligent Control and Automati on[C]. Hangzhou,2004.
[28]LINGRAS P J. Rough neural networks[A]. Proc of sixth international c onference on information processing and management of uncertainty in knowledge b ased systems[C]. Granada, Spain, 1996.
[29]LINGRAS P. Comparison of neofuzzy and rough neural networks[J]. Informa tion Sciences, 1998,110(3): 207-215.
[30]LIU Hongjian, TUO Hongya, LIU Yuncai. Rough neural network of variable pr ecision[J]. Neural Processing Letters, 2004, 19(1): 73-87,.
[31]何 明,李 博,马兆丰,等.粗糙集理论框架下的神经网络建模研究及应用[J].控制与决策,2005, 20(7): 782-785.
 HE Ming, LI Bo, MA Zhaofeng,et al. On the neural network modelling with su pport rough set theory[J]. Control and Decision, 2005, 20(7): 782-785.
[32]AN A, SHAN Ning, CHAN C, et al. Discovering rules for water dema nd prediction: an enhanced roughset approach[J]. Engng Applic Artif Intell, 1 996, 9(6): 645-653.
[33]TSUMOTO S. Automated extraction of medical expert system rules from clini cal databases based on rough set theory[J]. Information Sciences, 1998, 112(1) : 67-84.
[34]SHEN Lixiang, FRANCIS E H T, QU Liangsheng, et al. Fault diagnosis using rough sets theory[J]. Computers in Industry, 2000, 43(1): 61-72.
相似文献/References:
[1]尹林子,阳春华,桂卫华,等.规则分层约简算法[J].智能系统学报,2008,3(6):492.
 YIN Lin-zi,YANG Chun-hua,GUI Wei-hua,et al.Hierarchical reduction of rules[J].CAAI Transactions on Intelligent Systems,2008,3():492.
[2]毋? 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报,2009,4(2):112.
 WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,4():112.
[3]王国胤,张清华,胡? 军.粒计算研究综述[J].智能系统学报,2007,2(6):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[4]裴小兵,吴 涛,陆永忠.最小化决策规则集的计算方法[J].智能系统学报,2007,2(6):65.
 PEI Xiao-bing,WU Tao,LU Yong-zhong.Calculating method for a minimal set of decision rules[J].CAAI Transactions on Intelligent Systems,2007,2():65.
[5]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(5):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4():453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[6]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(3):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6():254.
[7]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(2):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8():183.[doi:10.3969/j.issn.1673-4785.201209056]
[8]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报,2015,10(2):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,10():273.[doi:10.3969/j.issn.1673-4785.201312008]
[9]陈坚,陈健,邵毅明,等.粗糙集的过饱和多交叉口协同优化模型研究[J].智能系统学报,2015,10(5):783.[doi:10.11992/tis.201406045]
 CHEN Jian,CHEN Jian,SHAO Yiming,et al.Collaborative optimization model for oversaturated multiple intersections based on the rough set theory[J].CAAI Transactions on Intelligent Systems,2015,10():783.[doi:10.11992/tis.201406045]
[10]王金英,韩晓冰,王艳平.二型直觉模糊粗糙集[J].智能系统学报,2015,10(6):943.[doi:10.11992/tis.201412013]
 WANG Jinying,HAN Xiaobing,WANG Yanping.Type-2 intuitionistic fuzzy rough sets[J].CAAI Transactions on Intelligent Systems,2015,10():943.[doi:10.11992/tis.201412013]
[11]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(2):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6():132.
[12]钱进,朱亚炎.面向成组对象集的增量式属性约简算法[J].智能系统学报,2016,11(4):496.[doi:10.11992/tis.201606005]
 QIAN Jin,ZHU Yayan.An incremental attribute reduction algorithm for group objects[J].CAAI Transactions on Intelligent Systems,2016,11():496.[doi:10.11992/tis.201606005]
[13]冯丹,黄洋,石云鹏,等.连续型数据的辨识矩阵属性约简方法[J].智能系统学报,2017,12(3):371.[doi:10.11992/tis.201704032]
 FENG Dan,HUANG Yang,SHI Yunpeng,et al.A discernibility matrix-based attribute reduction for continuous data[J].CAAI Transactions on Intelligent Systems,2017,12():371.[doi:10.11992/tis.201704032]
[14]高学义,张楠,童向荣,等.广义分布保持属性约简研究[J].智能系统学报,2017,12(3):377.[doi:10.11992/tis.201704025]
 GAO Xueyi,ZHANG Nan,TONG Xiangrong,et al.Research on attribute reduction using generalized distribution preservation[J].CAAI Transactions on Intelligent Systems,2017,12():377.[doi:10.11992/tis.201704025]
[15]陈曼如,张楠,童向荣,等.集值信息系统的快速正域约简[J].智能系统学报,2019,14(3):471.[doi:10.11992/tis.201804059]
 CHEN Manru,ZHANG Nan,TONG Xiangrong,et al.Quick positive region reduction in set-valued information systems[J].CAAI Transactions on Intelligent Systems,2019,14():471.[doi:10.11992/tis.201804059]
[16]黄琴,钱文彬,王映龙,等.代价敏感数据的多标记特征选择算法[J].智能系统学报,2019,14(5):929.[doi:10.11992/tis.201807027]
 HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14():929.[doi:10.11992/tis.201807027]
[17]唐玉凯,张楠,童向荣,等.不完备决策系统下的多特定类广义决策约简[J].智能系统学报,2019,14(6):1199.[doi:10.11992/tis.201905059]
 TANG Yukai,ZHANG Nan,TONG Xiangrong,et al.The multi-class-specific generalized decision preservation reduction in incomplete decision systems[J].CAAI Transactions on Intelligent Systems,2019,14():1199.[doi:10.11992/tis.201905059]
[18]程龙,钱文彬,王映龙,等.弱标记不完备决策系统的增量式属性约简算法[J].智能系统学报,2020,15(6):1079.[doi:10.11992/tis.202001017]
 CHENG Long,QIAN Wenbin,WANG Yinglong,et al.An incremental attribute reduction algorithm for incomplete decision system with weak labeling[J].CAAI Transactions on Intelligent Systems,2020,15():1079.[doi:10.11992/tis.202001017]

备注/Memo

收稿日期:2006-11-09.
基金项目:国家自然科学基金资助项目(60474069).
作者简介:
伞冶,男,1951年生,教授,博士生导师,中国系统仿真学会理事,黑龙江省系统仿真学会常务理事. 主要研究方向为复杂大系统控制与仿真. 
E-mail: sanye@hit.edu.cn.
叶玉玲,男,1979年生,博士研究生,主要研究方向为非线性复杂动态系统建模与预测. E-mail: yeyuling@hit.edu.cn.

更新日期/Last Update: 2009-05-06
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com