[1]柯 佳,程显毅,李晓薇.基于用户反馈的智能合作过滤模型的研究[J].智能系统学报,2007,2(1):59-63.
KE Jia,CHENG Xian-yi,LI Xiao-wei.Research of Agent collaborative filtering model based on user′s feedback[J].CAAI Transactions on Intelligent Systems,2007,2(1):59-63.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
2
期数:
2007年第1期
页码:
59-63
栏目:
学术论文—智能系统
出版日期:
2007-02-25
- Title:
-
Research of Agent collaborative filtering model based on user′s feedback
- 文章编号:
-
1673-4785(2007)01-0059-05
- 作者:
-
柯 佳1,2,程显毅2,李晓薇2
-
1.江苏大学工商管理学院,江苏镇江212013;
2.江苏大学 计算机科学与通信工程学院,江苏镇江212013
- Author(s):
-
KE Jia1,2, CHENG Xian-yi2, LI Xiao-wei2
-
1.School of Business Administration, Jiangsu University, Zhenjiang 212013, China;
2. Computer Science & Communication Engineering Institute,Jiangsu Universi ty,Zhenjiang 212013, China
-
- 关键词:
-
合作过滤; Agent; 用户兴趣; Q学习
- Keywords:
-
collaborative filtering; Agent; users’ interesting f eedback; Q learnin g algorithm.
- 分类号:
-
TP311
- 文献标志码:
-
A
- 摘要:
-
为了提供给用户更准确的信息,提出基于用户反馈的智能合作过滤模型和一种基于用户兴趣的动态Q学习算法,并建立用户兴趣模型.通过隐式反馈和显式反馈这2种反馈方式更新用户模型并实现合作过滤.实验结果表明,在输入相同查询提问情况下ACFM在预测用户兴趣的效果和推荐搜索信息的查全率和查准率方面比传统的搜索引擎有明显改善.
- Abstract:
-
In order to serve users with more accurate information, the Agent coll aborative filtering model—ACFM based on users’ feedback and the dynamic Q lear ning algorithm are put forward, and users’ interesting model is built. ACFM use s the method of users’ interesting feedback consisted of implicit feedback and interactive feedback to realize collaborative filtering. Experimental results sh ow that compared with traditional search engine, ACFM is more effective in predi cting users’ interests, and has more recalls and precision degree in recommendi ng information when inputting the same inquire words.
更新日期/Last Update:
2009-05-05