[1]魏俊伊,董红斌,余紫康.用于高维小样本特征选择的超网络设计[J].智能系统学报,2025,20(2):465-474.[doi:10.11992/tis.202402018]
 WEI Junyi,DONG Hongbin,YU Zikang.Hypernetwork design for feature selection of high-dimensional small samples[J].CAAI Transactions on Intelligent Systems,2025,20(2):465-474.[doi:10.11992/tis.202402018]
点击复制

用于高维小样本特征选择的超网络设计

参考文献/References:
[1] 余紫康, 董红斌. 具有混合策略的樽海鞘群特征选择算法[J]. 智能系统学报, 2024, 19(3): 757-765.
YU Zikang, DONG Hongbin. Salp swarm feature selection algorithm with a hybrid strategy[J]. CAAI transactions on intelligent systems, 2024, 19(3): 757-765.
[2] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15: 1929-1958.
[3] 金红, 胡智群. 基于非负矩阵分解的稀疏网络社区发现算法[J]. 电子学报, 2023, 51(10): 2950-2959.
JIN Hong, HU Zhiqun. The non-negative matrix factorization based algorithm for community detection in sparse networks[J]. Acta electronica sinica, 2023, 51(10): 2950-2959.
[4] 谢承旺, 郭华, 韦伟, 等. MaOEA/d2: 一种基于双距离构造的高维多目标进化算法[J]. 软件学报, 2023, 34(4): 1523-1542.
XIE Chengwang, GUO Hua, WEI Wei, et al. MaOEA/d2: many-objective evolutionary algorithm based on double distances[J]. Journal of software, 2023, 34(4): 1523-1542.
[5] 胡艳梅, 杨波, 多滨. 基于网络结构的正则化逻辑回归[J]. 计算机科学, 2021, 48(7): 281-291.
HU Yanmei, YANG Bo, DUO Bin. Logistic regression with regularization based on network structure[J]. Computer science, 2021, 48(7): 281-291.
[6] LIU Bo, WEI Ying, ZHANG Yu, et al. Deep neural networks for high dimension, low sample size data[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne: IJCAI, 2017: 2287-2293.
[7] KADRA A, LINDAUER M, HUTTER F, et al. Well-tuned simple nets excel on tabular datasets[EB/OL]. (2021-06-21)[2024-02-20]. https://arxiv.org/abs/2106.11189.
[8] CHEN Tianqi, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794.
[9] VON OSWALD J, HENNING C, GREWE B F, et al. Continual learning with hypernetworks[EB/OL]. (2019-06-03)[2024-02-20]. https://arxiv.org/abs/1906.00695.
[10] ZHANG Lin, LI Xin, HE Dongliang, et al. RRSR: reciprocal reference-based image super-resolution with progressive feature alignment and selection[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 648-664.
[11] ROMERO A, CARRIER P L, ERRAQABI A, et al. Diet networks: thin parameters for fat genomics[C]//International Conference on Learning Representations. Toulon: OpenReview.net, 2017: 1-11.
[12] BALIN M F, ABID A, ZOU J Y. Concrete autoencoders: differentiable feature selection and reconstruction[C]//International Conference on Machine Learning. Los Angeles: PMLR, 2019: 444-453.
[13] SINGH D, CLIMENTE-GONZALEZ H, PETROVICH M, et al. FsNet: feature selection network on high-dimensional biological data[C]//2023 International Joint Conference on Neural Networks. Gold Coast: IEEE, 2023: 1-9.
[14] MARGELOIU A, SIMIDJIEVSKI N, LIò P, et al. Weight predictor network with feature selection for small sample tabular biomedical data[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington: AAAI, 2023: 9081-9089.
[15] 黄路路, 唐舒宇, 张伟, 等. 基于Lp范数的非负矩阵分解并行优化算法[J]. 计算机科学, 2024, 51(2): 100-106.
HUANG Lulu, TANG Shuyu, ZHANG Wei, et al. Non-negative matrix factorization parallel optimization algorithm based on Lp-norm[J]. Computer science, 2024, 51(2): 100-106.
[16] LEMHADRI I, RUAN Feng, TIBSHIRANI R. LassoNet: neural networks with feature sparsity[J]. The journal of machine learning research, 2021, 22(1): 5633-5661.
[17] OBOZINSKI G, TASKAR B, JORDAN M. Multi-task feature selection[J]. Statistics department, UC Berkeley, Tech. Rep, 2006, 2(2.2): 2.
[18] HUANG Xiao, SONG Qingquan, YANG Fan, et al. Large-scale heterogeneous feature embedding[C]// Proceedings of the AAAI conference on artificial intelligence. Honolulu: AAAI, 2019: 3878-3885.
[19] 刘宇宸, 宗成庆. 跨模态信息融合的端到端语音翻译[J]. 软件学报, 2023, 34(4): 1837-1849.
LIU Yuchen, ZONG Chengqing. End-to-end speech translation by integrating cross-modal information[J]. Journal of software, 2023, 34(4): 1837-1849.
[20] CHEN Haochen, SULTAN S F, TIAN Yingtao, et al. Fast and accurate network embeddings via very sparse random projection[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019: 399-408.
[21] KAUR G, SINGH S, RANI R, et al. A comprehensive study of reversible data hiding (RDH) schemes based on pixel value ordering (PVO)[J]. Archives of computational methods in engineering, 2021, 28(5): 3517-3568.
[22] KHAN Z, ILTAF N, AFZAL H, et al. Enriching non-negative matrix factorization with contextual embeddings for recommender systems[J]. Neurocomputing, 2020, 380: 246-258.
[23] HUANG Tianlin, ZHAO Rujie, BI Lvqing, et al. Neural embedding singular value decomposition for collaborative filtering[J]. IEEE transactions on neural networks and learning systems, 2022, 33(10): 6021-6029.
[24] LIU Haoyue, ZHOU Mengchu, LIU Qing. An embedded feature selection method for imbalanced data classification[J]. IEEE/CAA journal of automatica sinica, 2019, 6(3): 703-715.
[25] YAO Zhewei, GHOLAMI A, SHEN Sheng, et al. ADAHESSIAN: an adaptive second order optimizer for machine learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2021: 10665-10673.
[26] YANG Junchen, LINDENBAUM O, KLUGER Y. Locally sparse neural networks for tabular biomedical data[C]//International Conference on Machine Learning. Baltimore: PMLR, 2022: 25123-25153.
相似文献/References:
[1]孙正兴,张尧烨,李? 彬.基于线性规划分类器的相关反馈技术[J].智能系统学报,2007,2(3):34.
 SUN Zheng-xing,ZHANG Yao-ye,LI Bin.Applying relevance feedback with a linear programming classifier[J].CAAI Transactions on Intelligent Systems,2007,2():34.
[2]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(5):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4():453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[3]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(3):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6():254.
[4]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(3):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8():189.
[5]曹晋,张莉,李凡长.一种基于支持向量数据描述的特征选择算法[J].智能系统学报,2015,10(2):215.[doi:10.3969/j.issn.1673-4785.201405063]
 CAO Jin,ZHANG Li,LI Fanzhang.A noval support vector data description-based feature selection method[J].CAAI Transactions on Intelligent Systems,2015,10():215.[doi:10.3969/j.issn.1673-4785.201405063]
[6]张佳骕,蒋亦樟,王士同.基于特征选择聚类方法的稀疏TSK模糊系统[J].智能系统学报,2015,10(4):583.[doi:10.3969/j.issn.1673-4785.201412001]
 ZHANG Jiasu,JIANG Yizhang,WANG Shitong.Sparse TSK fuzzy system based on feature selection clustering method[J].CAAI Transactions on Intelligent Systems,2015,10():583.[doi:10.3969/j.issn.1673-4785.201412001]
[7]陈玉明,吴克寿,李向军.基因表达数据在邻域关系中的特征选择[J].智能系统学报,2014,9(2):210.[doi:10.3969/j.issn.1673-4785.201307014]
 CHEN Yuming,WU Keshou,LI Xiangjun.Gene expression data feature selection with neighborhood relation[J].CAAI Transactions on Intelligent Systems,2014,9():210.[doi:10.3969/j.issn.1673-4785.201307014]
[8]郭雨萌,李国正.一种多标记数据的过滤式特征选择框架[J].智能系统学报,2014,9(3):292.[doi:10.3969/j.issn.1673-4785.201403064]
 GUO Yumeng,LI Guozheng.A filtering framework for the multi-label feature selection[J].CAAI Transactions on Intelligent Systems,2014,9():292.[doi:10.3969/j.issn.1673-4785.201403064]
[9]滕旭阳,董红斌,孙静.面向特征选择问题的协同演化方法[J].智能系统学报,2017,12(1):24.[doi:10.11992/tis.201611029]
 TENG Xuyang,DONG Hongbin,SUN Jing.Co-evolutionary algorithm for feature selection[J].CAAI Transactions on Intelligent Systems,2017,12():24.[doi:10.11992/tis.201611029]
[10]路子祥,屠黎阳,祖辰,等.基于脑连接网络的阿尔茨海默病临床变量值预测[J].智能系统学报,2017,12(3):355.[doi:10.11992/tis.201607020]
 LU Zixiang,TU Liyang,ZU Chen,et al.Prediction of clinical variables in Alzheimer’s disease using brain connective networks[J].CAAI Transactions on Intelligent Systems,2017,12():355.[doi:10.11992/tis.201607020]

备注/Memo

收稿日期:2024-2-20。
基金项目:黑龙江自然科学基金项目(LH2020F023).
作者简介:魏俊伊,硕士研究生,主要研究方向为群智能算法和深度学习。E-mail:weijunyi@hrbeu.edu.cn;董红斌,教授,博士生导师,中国计算机学会高级会员,主要研究方向为多智能体系统、机器学习。主持和完成国家自然科学基金项目、工信部基础研究项目、黑龙江省自然科学基金项目,荣获黑龙江省高校科学技术奖和黑龙江省优秀高等教育科学成果奖。发表学术论文90余篇,出版教材2部。E-mail: donghongbin@hrbeu.edu.cn;余紫康,硕士研究生,主要研究方向为群智能算法、数据挖掘。E-mail:yuzk6@mail2.sysu.edu.cn。
通讯作者:董红斌. E-mail:donghongbin@hrbeu.edu.cn

更新日期/Last Update: 2025-03-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com