[1]曲海成,徐波.基于自适应图学习权重的多模态情感分析[J].智能系统学报,2025,20(2):516-528.[doi:10.11992/tis.202401001]
 QU Haicheng,XU Bo.Multimodal sentiment analysis based on adaptive graph learning weight[J].CAAI Transactions on Intelligent Systems,2025,20(2):516-528.[doi:10.11992/tis.202401001]
点击复制

基于自适应图学习权重的多模态情感分析

参考文献/References:
[1] PE?A D, AGUILERA A, DONGO I, et al. A framework to evaluate fusion methods for multimodal emotion recognition[J]. IEEE access, 2023, 11: 10218-10237.
[2] ZHANG Junling, WU Xuemei, HUANG Changqin. AdaMoW: multimodal sentiment analysis based on adaptive modality-specific weight fusion network[J]. IEEE access, 2023, 11: 48410-48420.
[3] 张亚洲, 戎璐, 宋大为, 等. 多模态情感分析研究综述[J]. 模式识别与人工智能, 2020, 33(5): 426-438.
ZHANG Yazhou, RONG Lu, SONG Dawei, et al. A survey on multimodal sentiment analysis[J]. Pattern recognition and artificial intelligence, 2020, 33(5): 426-438.
[4] GANDHI A, ADHVARYU K, PORIA S, et al. Multimodal sentiment analysis: a systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions[J]. Information fusion, 2023, 91: 424-444.
[5] MAI Sijie, HU Haifeng, XING Songlong. Modality to modality translation: an adversarial representation learning and graph fusion network for multimodal fusion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 164-172.
[6] ZADEH A, LIANG P P, PORIA S, et al. Multi-attention recurrent network for human communication comprehension[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 5642-5649.
[7] HAN Wei, CHEN Hui, GELBUKH A, et al. Bi-bimodal modality fusion for correlation-controlled multimodal sentiment analysis[C]//Proceedings of the 2021 International Conference on Multimodal Interaction. Montréal: ACM, 2021: 6-15.
[8] 刘颖, 王哲, 房杰, 等. 基于图文融合的多模态舆情分析[J]. 计算机科学与探索, 2022, 16(6): 1260-1278.
LIU Ying, WANG Zhe, FANG Jie, et al. Multi-modal public opinion analysis based on image and text fusion[J]. Journal of frontiers of computer science and technology, 2022, 16(6): 1260-1278.
[9] HUANG Changqin, ZHANG Junling, WU Xuemei, et al. TeFNA: text-centered fusion network with crossmodal attention for multimodal sentiment analysis[J]. Knowledge-based systems, 2023, 269: 110502.
[10] SUN Hao, LIU Jiaqing, CHEN Y W, et al. Modality-invariant temporal representation learning for multimodal sentiment classification[J]. Information fusion, 2023, 91: 504-514.
[11] MAI Sijie, ZENG Ying, HU Haifeng. Multimodal information bottleneck: learning minimal sufficient unimodal and multimodal representations[J]. IEEE transactions on multimedia, 2023, 25: 4121-4134.
[12] ZADEH A, CHEN Minghai, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[EB/OL]. (2017-07-23)[2024-01-02]. https://arxiv.org/abs/1707.07250.
[13] TSAI Y H H, BAI Shaojie, LIANG P P, et al. Multimodal transformer for unaligned multimodal language sequences[C]//Proceedings of the Conference Association for Computational Linguistics Meeting. Florence: ACL, 2019: 6558-6569.
[14] SU Guixin, HE Junyi, LI Xia, et al. NFCMF: noise filtering and CrossModal fusion for multimodal sentiment analysis[C]//2021 International Conference on Asian Language Processing. Singapore: IEEE, 2021: 316-321.
[15] YANG Shuo, XU Zhaopan, WANG Kai, et al. BiCro: noisy correspondence rectification for multi-modality data via bi-directional cross-modal similarity consistency[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 19883-19892.
[16] 孙杰, 车文刚, 高盛祥. 面向多模态情感分析的多通道时序卷积融合[J]. 计算机科学与探索, 2024, 18(11): 3041-3050.
SUN Jie, CHE Wengang, GAO Shengxiang. Multi-channel temporal convolution fusion for multimodal sentiment analysis[J]. Journal of frontiers of computer science and technology, 2024, 18(11): 3041-3050.
[17] 鲍小异, 姜晓彤, 王中卿, 等. 基于跨语言图神经网络模型的属性级情感分类[J]. 软件学报, 2023, 34(2): 676-689.
BAO Xiaoyi, JIANG Xiaotong, WANG Zhongqing, et al. Cross-lingual aspect-level sentiment classification with graph neural network[J]. Journal of software, 2023, 34(2): 676-689.
[18] JANGRA A, MUKHERJEE S, JATOWT A, et al. A survey on multi-modal summarization[J]. ACM computing surveys, 2023, 55(13s): 1-36.
[19] MAJUMDER N, HAZARIKA D, GELBUKH A, et al. Multimodal sentiment analysis using hierarchical fusion with context modeling[J]. Knowledge-based systems, 2018, 161: 124-133.
[20] XU Nan, MAO Wenji. MultiSentiNet: a deep semantic network for multimodal sentiment analysis[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 2399-2402.
[21] AKHTAR M S, CHAUHAN D S, GHOSAL D, et al. Multi-task learning for multi-modal emotion recognition and sentiment analysis[EB/OL]. (2019-05-14) [2024-01-02]. https://arxiv.org/abs/1905.05812.
[22] HAZARIKA D, ZIMMERMANN R, PORIA S. MISA: modality-invariant and-specific representations for multimodal sentiment analysis[C]//Proceedings of the 28th ACM International Conference on Multimedia. Seattle: ACM, 2020: 1122-1131.
[23] YU Wenmeng, XU Hua, YUAN Ziqi, et al. Learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2021: 10790-10797.
[24] ZUO Haolin, LIU Rui, ZHAO Jinming, et al. Exploiting modality-invariant feature for robust multimodal emotion recognition with missing modalities[C]//2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island: IEEE, 2023: 1-5.
[25] LIU A H, JIN S, LAI C I J, et al. Cross-modal discrete representation learning[EB/OL]. (2021-06-10) [2024-01-02]. https://arxiv.org/abs/2106.05438.
[26] 胡文彬, 陈龙, 黄贤波, 等. 融合交叉注意力的突发事件多模态中文反讽识别模型[J]. 智能系统学报, 2024, 19(2): 392-400.
HU Wenbin, CHEN Long, HUANG Xianbo, et al. A multimodal Chinese sarcasm detection model for emergencies based on cross attention[J]. CAAI transactions on intelligent systems, 2024, 19(2): 392-400.
[27] 李梦云, 张景, 张换香, 等. 基于跨模态语义信息增强的多模态情感分析[J]. 计算机科学与探索, 2024, 18(9): 2476-2486.
LI Mengyun, ZHANG Jing, ZHANG Huanxiang, et al. Multimodal sentiment analysis based on cross-modal semantic information enhancement[J]. Journal of frontiers of computer science and technology, 2024, 18(9): 2476-2486.
[28] 包广斌, 李港乐, 王国雄. 面向多模态情感分析的双模态交互注意力[J]. 计算机科学与探索, 2022, 16(4): 909-916.
BAO Guangbin, LI Gangle, WANG Guoxiong. Bimodal interactive attention for multimodal sentiment analysis[J]. Journal of frontiers of computer science and technology, 2022, 16(4): 909-916.
[29] TANG Jiajia, LIU Dongjun, JIN Xuanyu, et al. BAFN: bi-direction attention based fusion network for multimodal sentiment analysis[J]. IEEE transactions on circuits and systems for video technology, 2023, 33(4): 1966-1978.
[30] LYU Fengmao, CHEN Xiang, HUANG Yanyong, et al. Progressive modality reinforcement for human multimodal emotion recognition from unaligned multimodal sequences[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 2554-2562.
[31] RAHMAN W, HASAN M K, LEE Sangwu, et al. Integrating multimodal information in large pretrained transformers[C]//Proceedings of the conference. Association for Computational Linguistics. Online: ACL, 2020: 2359-2369.
[32] SANGWAN S, CHAUHAN D S, AKHTAR M S, et al. Multi-task gated contextual cross-modal attention framework for sentiment and emotion analysis[C]//Neural Information Processing. Sydney: Springer, 2019: 662-669.
[33] HUANG Yanping, PENG Hong, LIU Qian, et al. Attention-enabled gated spiking neural P model for aspect-level sentiment classification[J]. Neural networks, 2023, 157: 437-443.
[34] TISHBY N, PEREIRA F C, BIALEK W. The information bottleneck method[EB/OL]. (2000-04-24) [2024-01-02]. https://arxiv.org/abs/physics/0004057.
[35] ALEMI A A, FISCHER I, DILLON J V, et al. Deep variational information bottleneck[EB/OL]. (2016-12-01) [2024-01-02]. https://arxiv.org/abs/1612.00410.
[36] ZADEH A, ZELLERS R, PINCUS E, et al. Multimodal sentiment intensity analysis in videos: facial gestures and verbal messages[J]. IEEE intelligent systems, 2016, 31(6): 82-88.
[37] BAGHER ZADEH A, LIANG P P, PORIA S, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne: ACL, 2018: 2236-2246.
[38] LIU Zhun, SHEN Ying, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[EB/OL]. (2018-05-31) [2024-01-02]. https://arxiv.org/abs/1806.00064.
[39] HAN Wei, CHEN Hui, PORIA S. Improving multimodal fusion with hierarchical mutual information maximization for multimodal sentiment analysis[EB/OL]. (2021-09-01) [2024-01-02]. https://arxiv.org/abs/2109.00412.
[40] WANG Di, GUO Xutong, TIAN Yumin, et al. TETFN: a text enhanced transformer fusion network for multimodal sentiment analysis[J]. Pattern recognition, 2023, 136: 109259.
[41] LI Yong, WANG Yuanzhi, CUI Zhen. Decoupled multimodal distilling for emotion recognition[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 6631-6640.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]赵文清,侯小可,沙海虹.语义规则在微博热点话题情感分析中的应用[J].智能系统学报,2014,9(1):121.[doi:10.3969/j.issn.1673-4785.201208020]
 ZHAO Wenqing,HOU Xiaoke,SHA Haihong.Application of semantic rules to sentiment analysis of microblog hot topics[J].CAAI Transactions on Intelligent Systems,2014,9():121.[doi:10.3969/j.issn.1673-4785.201208020]
[3]李雪,蒋树强.智能交互的物体识别增量学习技术综述[J].智能系统学报,2017,12(2):140.[doi:10.11992/tis.201701006]
 LI Xue,JIANG Shuqiang.Incremental learning and object recognition system based on intelligent HCI: a survey[J].CAAI Transactions on Intelligent Systems,2017,12():140.[doi:10.11992/tis.201701006]
[4]侯涛,张强.基于T-S型模糊加权的多模软切换的风电机组变桨控制[J].智能系统学报,2018,13(4):625.[doi:10.11992/tis.201710009]
 HOU Tao,ZHANG Qiang.Multi-mode soft-switch variable-pitch control of wind turbines based on T-S fuzzy weighting[J].CAAI Transactions on Intelligent Systems,2018,13():625.[doi:10.11992/tis.201710009]
[5]曾碧卿,韩旭丽,王盛玉,等.层次化双注意力神经网络模型的情感分析研究[J].智能系统学报,2020,15(3):460.[doi:10.11992/tis.201812017]
 ZENG Biqing,HAN Xuli,WANG Shengyu,et al.Hierarchical double-attention neural networks for sentiment classification[J].CAAI Transactions on Intelligent Systems,2020,15():460.[doi:10.11992/tis.201812017]
[6]张新钰,邹镇洪,李志伟,等.面向自动驾驶目标检测的深度多模态融合技术[J].智能系统学报,2020,15(4):758.[doi:10.11992/tis.202002010]
 ZHANG Xinyu,ZOU Zhenhong,LI Zhiwei,et al.Deep multi-modal fusion in object detection for autonomous driving[J].CAAI Transactions on Intelligent Systems,2020,15():758.[doi:10.11992/tis.202002010]
[7]肖宇晗,林慧苹,汪权彬,等.基于双特征嵌套注意力的方面词情感分析算法[J].智能系统学报,2021,16(1):142.[doi:10.11992/tis.202012024]
 XIAO Yuhan,LIN Huiping,WANG Quanbin,et al.An algorithm for aspect-based sentiment analysis based on dual features attention-over-attention[J].CAAI Transactions on Intelligent Systems,2021,16():142.[doi:10.11992/tis.202012024]
[8]陈玲玲,毕晓君.多模态融合网络的睡眠分期研究[J].智能系统学报,2022,17(6):1194.[doi:10.11992/tis.202202018]
 CHEN Lingling,BI Xiaojun.Sleep staging model based on multimodal fusion[J].CAAI Transactions on Intelligent Systems,2022,17():1194.[doi:10.11992/tis.202202018]
[9]张铭泉,周辉,曹锦纲.基于注意力机制的双BERT有向情感文本分类研究[J].智能系统学报,2022,17(6):1220.[doi:10.11992/tis.202112038]
 ZHANG Mingquan,ZHOU Hui,CAO Jingang.Dual BERT directed sentiment text classification based on attention mechanism[J].CAAI Transactions on Intelligent Systems,2022,17():1220.[doi:10.11992/tis.202112038]
[10]丁维昌,施俊,王骏.自监督对比特征学习的多模态乳腺超声诊断[J].智能系统学报,2023,18(1):66.[doi:10.11992/tis.202111052]
 DING Weichang,SHI Jun,WANG Jun.Multi-modality ultrasound diagnosis of the breast with self-supervised contrastive feature learning[J].CAAI Transactions on Intelligent Systems,2023,18():66.[doi:10.11992/tis.202111052]
[11]吴钟强,张耀文,商琳.基于语义特征的多视图情感分类方法[J].智能系统学报,2017,12(5):745.[doi:10.11992/tis.201706026]
 WU Zhongqiang,ZHANG Yaowen,SHANG Lin.Multi-view sentiment classification of microblogs based on semantic features[J].CAAI Transactions on Intelligent Systems,2017,12():745.[doi:10.11992/tis.201706026]
[12]朱超杰,闫昱名,初宝昌,等.采用目标注意力的方面级多模态情感分析研究[J].智能系统学报,2024,19(6):1562.[doi:10.11992/tis.202404009]
 ZHU Chaojie,YAN Yuming,CHU Baochang,et al.Aspect-level multimodal sentiment analysis via object-attention[J].CAAI Transactions on Intelligent Systems,2024,19():1562.[doi:10.11992/tis.202404009]

备注/Memo

收稿日期:2024-1-2。
基金项目:辽宁省高等学校基本科研项目(LIKMZ20220699).
作者简介:曲海成,副教授,辽宁工程技术大学软件学院副院长,中国计算机学会会员。主要研究方向为遥感影像高性能计算、视觉信息计算、目标检测与识别。主持辽宁省自然科学基金项目1项、辽宁省教育厅面上项目2项,发表学术论文60余篇。E-mail:quhai cheng@lntu.edu.cn;徐波,硕士研究生,主要研究方向为多模态情感分析。E-mail:lntu_xubo@163.com。
通讯作者:曲海成. E-mail:quhaicheng@lntu.edu.cn

更新日期/Last Update: 2025-03-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com